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Abstract

■ How does the brain encode and organize our understanding
of the people we know? In this study, participants imagined per-
sonally familiar others in a variety of contexts while undergoing
fMRI. Using multivoxel pattern analysis, we demonstrated that
thinking about familiar others elicits consistent fine-grained
patterns of neural activity. Person-specific patterns were distrib-
uted across many regions previously associated with social cog-
nition, including medial prefrontal, medial parietal, and lateral
temporoparietal cortices, as well as other regions including the
anterior and mid-cingulate, insula, and precentral gyrus. Analo-
gous context-specific patterns were observed in medial parietal
and superior occipital regions. These results suggest that medial
parietal cortex may play a particularly central role in simulating
familiar others, as this is the only region to simultaneously rep-

resent both person and context information. Moreover, within
portions of medial parietal cortex, the degree to which person-
specific patterns were typically instated on a given trial predicted
subsequent judgments of accuracy and vividness in the mental
simulation. This suggests that people may access neural repre-
sentations in this region to form metacognitive judgments of
confidence in their mental simulations. In addition to fine-
grained patterns within brain regions, we also observed encod-
ing of both familiar people and contexts in coarse-grained
patterns spread across the independently defined social brain
network. Finally, we found tentative evidence that several estab-
lished theories of person perception might explain the relative
similarity between person-specific patterns within the social
brain network. ■

INTRODUCTION

The individual person is a fundamental unit of social
life. To navigate our own social lives, we must have a
detailed understanding of the individuals who populate
it, including an ability to anticipate their idiosyncratic
thoughts, feelings, and actions. As such, the mind and
brain must represent knowledge of not just general
human psychology—a lay theory of mind—but also of
the particular psychologies of people who are impor-
tant to us. Such person-specific knowledge could guide
both direct interpersonal interactions as well as offline
simulations of others’ thoughts and actions. The pres-
ent investigation aimed to characterize the neural en-
coding of our knowledge of personally familiar others.
In addition to investigating which brain regions support
person-specific representations, we examined how such
representations contribute to the process of simulating
other minds. In particular, we identified brain regions
that are likely candidates for integrating person informa-
tion with context information to form complete simula-
tions of social events. We also tested the hypothesis that
instating a “typical” person-specific pattern serves as a
metacognitive clue to the predictive validity of such simu-
lations. Finally, we examined several theories of person
perception to determine which, if any, provide an ap-

propriate taxonomy for our neural representations of per-
sonally familiar others.

Several previous studies have investigated the neural
representation of personally familiar individuals. Regions
including medial pFC, medial parietal cortex, the TPJ, and
the STS have been consistently implicated in social
thought, forming the so-called “social brain” network
(for reviews, see Van Overwalle & Baetens, 2009; Mitchell,
2008). It is possible that many or all of these regions
support person-specific representations, a position sup-
ported by studies examining the neural correlates of (per-
son) familiarity (Cloutier, Kelley, & Heatherton, 2011;
Gobbini, Leibenluft, Santiago, & Haxby, 2004). Evidence
from an fMRI adaptation (i.e., repetition suppression)
study also suggests that a broad array of brain regions
may contain information specific to thinking about partic-
ular targets (Szpunar, Jacques, Robbins, Wig, & Schacter,
2014). However, both adaptation and activation-based
fMRI studies have also suggested a more specific role
for ventral medial pFC in representations of specific famil-
iar others (Heleven & Van Overwalle, 2016; Welborn &
Lieberman, 2015).

A reasonable question one might ask on the basis of
such studies is to what extent the representation of other
people is distributed across the social brain versus sup-
ported by a single, dedicated module? This debate over
distributed versus modular functioning has long occupied
cognitive neuroscientists generally (de Beeck, Haushofer,Harvard University
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& Kanwisher, 2008). Understanding the functional brain
architecture supporting representation of specific persons
might help address questions of interest to psychologists.
For example, if person-specific information appeared to
be distributed throughout the social brain network, as
previous studies have suggested, it would suggest that
detailed knowledge about other people permeates our
social cognitive machinery. In other words, it would hint
that even social judgments that do not necessarily require
any background knowledge may make use of person-
specific information when it is available.

Identifying representations of individual people pre-
sents a challenge because traditional techniques for ana-
lyzing fMRI data are ill-suited to the task. The social brain
network activates very differently in response to social
and nonsocial stimuli, but imagining a set of familiar
people would likely elicit comparatively similar levels of
activity for each individual. Thus, traditional univariate
approaches, which rely on differences in average activity
levels to distinguish between stimuli, may prove unable
to differentiate target people, even in brain regions that
do contain person-specific representations. Fortunately, a
nascent set of tools for exploring fMRI data may now
make it possible to identify where these representations
reside. These techniques, known collectively as multi-
voxel pattern analysis (MVPA), focus on fine-grained
patterns of neural activity within brain regions, or coarse-
grained activity patterns across multiple regions, rather
than on gross average activity levels within individual re-
gions (Haxby et al., 2001). As a result, MVPA can achieve
greater sensitivity than traditional univariate statistical
analyses and can detect multidimensional neural codes
that may exist even in the absence of large-scale differ-
ences in average neural activity (Davis et al., 2014).

Here we apply the form of MVPA known as represen-
tational similarity analysis (RSA) to identify brain regions
that demonstrate different patterns of neural activity
when perceivers imagine different people (Kriegeskorte,
Mur, & Bandettini, 2008). We entered into the investiga-
tion agnostic to the spatial scale at which person-specific
information might be encoded, and thus, we applied
RSA in search of both fine-grained intraregional activity
patterns—via theuse of searchlightmapping (Kriegeskorte,
Goebel, & Bandettini, 2006)—and coarse-grained inter-
regional patterns distributed across the social brain net-
work as a whole.

An initial MVPA-based foray into the representations of
individual people has already yielded promising results
(Hassabis et al., 2014). In that study, patterns elicited
by thinking about four fictional people in an episodic
simulation task were reliably classified in two adjacent
portions of dorsal medial pFC. The biographies of the
fictional targets were written to create strong impressions
of certain traits (agreeableness and extraversion). Addi-
tional brain regions were capable of these decoding in-
dividual personality traits, but only the medial prefrontal
regions could distinguish between all four target people.

It remains unclear whether the classification was being
driven by the sort of rich, detailed knowledge that charac-
terizes our representations of personally familiar others,
or simply by the exaggerated social differences created
by this experiment’s central manipulation. To resolve this
uncertainty, this study used a broad set of personally
familiar targets.
This study was designed to cast light on more than just

which brain regions support representations of specific
people. When participants in our experiment imagined
people they knew, they imagined them within a set of
different contexts. This allowed us to assess which brain re-
gions support context-specific patterns of neural activity
and where representations of person and context identity
overlap. The question of how knowledge of dispositions
and situations are integrated when making attributions
has been of long standing interest to social psychology
(Gilbert & Malone, 1995; Jones & Harris, 1967). Recent
neuroscientific investigations have suggested that in-
creased activity in the social brain network predicts dispo-
sitional attributions, but have been inconsistent regarding
the positive predictors of situational distributions (Moran,
Jolly, & Mitchell, 2014; Kestemont, Vandekerckhove, Ma,
Van Hoeck, & Van Overwalle, 2013). By focusing on fine-
grained patterns rather than on raw activity levels, this
study aimed to provide a clearer view of which region(s)
are potential loci for the integration of situational and
dispositional information. Although our design does not
permit a detailed assay of the nature of such integration,
localizing regions that support both types of information
serves as a crucial first step in this direction.
By examining mental simulations of the same set of

people over several iterations, we also aimed to shed
light on the psychological process of imagining other
people. In particular, we analyzed the patterns of activity
during each simulation to reveal how perceivers arrive at
metacognitive judgments of confidence in their imagina-
tion. Over the course of the study, participants were pre-
sumably able to integrate their knowledge of target
people into some simulations better than others. For
example, imagining an elderly relative having dinner with
you is not particularly outlandish, whereas picturing that
same person frolicking at the beach may prove rather
more difficult. We hypothesized that the degree to which
one can easily incorporate knowledge of a person into a
simulation could signal how valid that simulation might
be: that is, how likely to accurately reflect the real actions
of a given person in a given situation. In the present par-
adigm, we measured the degree to which the pattern
elicited on each trial resembles the patterns across all
other trials featuring the same target person. This pattern
typicality measure served as an indirect index of the in-
corporation of person knowledge into each simulation.
We expected pattern typicality to be positively associated
with trial-wise ratings of vividness and accuracy.
Finally, we planned to examine several theories which

might explain the differences in person-specific neural
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representations. Determining how people naturally
divide up the social world has produced many valuable
theories in social psychology. Although these theories
can each explain a variety of social behaviors, it is un-
clear which taxonomies characterize the information
that perceivers spontaneously draw upon to simulate
others’ minds. To address this question, we examined
a wide range of theories as candidate explanations for
the similarities between person-specific activity pat-
terns. These candidates included five major conceptions
of person perception, self-reported and implicit measures
of holistic similarity, and in-scanner ratings of accuracy
and vividness. The extant social theories were the fol-
lowing: categorization of basic social groups (age, race,
sex); the Five-Factor Model of Personality (Goldberg,
1990; McCrae & Costa, 1987), consisting of openness,
conscientiousness, extraversion, agreeableness, and neu-
roticism; the dimensions of warmth and competence,
which characterize the Stereotype Content Model (Fiske,
Cuddy, Glick, & Xu, 2002); egocentric factors (simi-
larity, familiarity, and liking); and dyadic relational model
(sharing, trading, or ordering) between target and partici-
pant (Haslam, 2004; Haslam & Fiske, 1999).
Each of these different characterizations of the target

people makes different predictions about which targets
should elicit more similar or more different neural activ-
ity patterns. For example, two target people might be-
long to the same basic social groups but have very
different personalities on the Big 5 factors. The social
groups model would thus predict similar patterns of neu-
ral activity for these two targets, whereas the Five-Factor
Model would predict relatively dissimilar patterns. Using
RSA (Kriegeskorte, Mur, & Bandettini, 2008), we were
able to compare these theory-based predictions about in-
tertarget similarity with the actual similarity between pat-
terns of neural activity. Thus, we could test hundreds of
predictions simultaneously to determine which theory
best accounts for the observed neural data. Directly com-
paring the theories to each other would require much
more statistical power, and so in this study, we instead
focused on examining whether there was evidence for
each theory’s influence on pattern similarity at all. We
thus attempted to select as broad a range of theories as
possible rather than a set of highly similar, competing
theories.

METHODS

Raw behavioral data, processed imaging data, and custom
experiment presentation and statistical analysis code
for this study are freely available on the Open Science
Framework (osf.io/gxhkr/). Raw imaging data have been
deposited at the Harvard University Dataverse (dx.doi.
org/10.7910/DVN/ZQQABJ). Shared data have been
stripped of identifying features for the privacy of the
participants.

Participants

A power analysis was conducted via Monte Carlo simula-
tion to assess the number of participants and trials needed
with the design specified below. This analysis targeted
the final planned RSA, in which intertarget pattern similar-
ity was to be modeled in terms of existing theories of
person perception. We targeted this analysis rather than
the primary trial-wise RSA to avoid the additional uncer-
tainty of estimating context and run effect sizes at the trial
level. Simulated patterns of neural activity were generated
to embody an anticipated effect size of r= .15 (correlation
between model and neural data), which we judged to be
reasonable based on previous research (Kriegeskorte,
Mur, & Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al.,
2008). This was achieved by creating a noise-free “model”
pattern ∼N(0, 1) and adding noise to create a simulated
neural pattern matrix with the appropriate relationship
to the model. A simulation-based search across noise
parameters determined that a ∼N(0, 2.4) distribution of
noise yielded the appropriate effect size.

Additional, independently generated noise ∼N(0, 3.4)
was then added to these simulated neural patterns to
produce patterns of activity for each simulated experi-
mental trial. The trial-wise noise parameter was calcu-
lated by adjusting the same parameter used in a similar
power analysis for a previous study (Tamir, Thornton,
Contreras, & Mitchell, 2016) to account for the difference
in trial duration (12.5 sec modeled in this study vs. 4.25 in
the previous study). Each simulated pattern set consisted
of 20 (target people) by 200 (voxel) elements. Because
we could not anticipate the size of activations in advance,
voxel count was set to near the average searchlight size.
Patterns were then subjected to RSA as described below
under imaging procedures, producing 20 × 20 similarity
matrices for each simulated participant that could be
compared with the correlation matrix of the original
“model” pattern. To simplify computation, the general lin-
ear model (GLM) phase of this analysis was reduced to
averaging the patterns within each participant across trials.
This process was repeated 100 times with simulated par-
ticipant numbers ranging from 2 to 25 and trial numbers
ranging from 2 to 10 per target. These simulations indi-
cated that 25 participants with six trials per person should
be adequate to ensure 95% statistical power at a threshold
of α = .001.

Participants (n = 25) were recruited from the Harvard
University Psychology Study Pool. Two were subsequently
excluded: one due to a neurological anomaly detected
during scanning and the other due to excessive head
motion. All remaining participants (15 women; age range =
18–27 years, mean age = 21.1 years) were right-handed,
neurologically normal, fluent in English, and had normal
or corrected-to-normal vision. Participants provided in-
formed consent in a manner approved by the committee
on the use of human subjects in research at Harvard
University.
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Stimuli and Behavioral Procedure

Pretesting

We selected a set of 20 target stimuli to maximize observ-
able differences in the imaging experiment. Participants
first provided the names of 40 personally familiar adults.
To choose a highly diverse set of targets, and to provide
measures for RSA, we asked participants to rate these
people on 16 social dimensions. These included Big
5 personality traits (Goldberg, 1990; McCrae & Costa,
1987), warmth and competence (Fiske et al., 2002), the
degree to which their relationship with the person was
predicated on communal sharing, equity matching,
authority (Haslam, 2004; Haslam & Fiske, 1999), and sim-
ilarity, familiarity, and liking. Participants also indicated
the race, sex, and age of each target. Single-item ratings
on 7-point Likert scales were used for all dimensions
other than the demographics. Multi-item scales would
have been preferable psychometrically but inordinately
time-consuming and exhausting for participants. We pro-
vided definitions of the dimensions to ensure that partic-
ipants used the scales consistently. The dimensions were
presented in a unique random order for each participant,
and the order of the target people was randomized for
each dimension.

These ratings were used to select a subset of 20 target
people who were diverse across all 16 dimensions. The
selection process proceeded as follows: first the target
most different (in Euclidean distance) from centroid of
the group across the 16 measured dimensions was se-
lected; on each subsequent iteration of the algorithm,
the target person who would maximize the theory-
weighted average standard deviation of the selected set
would be added to it. The algorithm terminated once
20 targets had been selected. Although this procedure
was not guaranteed to produce an optimal selection, it
was very rapid to compute—a tradeoff we deemed worth-
while given that it had to be performed while participants
waited. This approach succeeded in producing an increase
in intertarget variance in 20 of 23 participants and yielded
only minor decreases in variance in the other three.

Participants also provided holistic similarity measures
in a separate behavioral task. On each of 380 trials, partic-
ipants compared two target people to one reference tar-
get and indicated which of the two was more similar to
the reference. The trial number allowed for two presenta-
tions of each unique pair of target people (in the nonre-
ference positions). Participants’ choices were used to
derive a self-reported explicit holistic similarity matrix be-
tween the targets. This similarity matrix was generated by
summing the times a particular pair of reference and se-
lected comparison targets were judged to be the more
similar of the two possible pairs and dividing this sum
by the number of possible trials on which this judgment
might have occurred. RTs were used to generate an equiv-
alent implicit holistic similarity matrix, with longer RTs in-
dicating greater similarity between the two choice targets.

Experimental Paradigm

Just before scanning, participants were asked to imagine
each of six common situations: taking a long road trip,
shopping for groceries, going to a fair, going to the
beach, waiting for the doctor, and having dinner at a res-
taurant. They were instructed to imagine these situations
as vividly as possible from their own perspective. During
fMRI scanning, participants simulated each of the 20 tar-
get people in each of these contexts (Hassabis et al.,
2014). Each trial began with a prompt (2.5 sec), indicat-
ing which context the participant should simulate (e.g.,
“eating at a restaurant”). Next, the name of 1 of the
20 targets appeared (2.5 sec), after which the screen went
blank and participants had 10 sec to simulate that target in
the specified context. Participants were instructed not to
imagine new situations on each trial, but instead to place
each target person in the same previously imagined
context.
After the simulation period, participants rated the viv-

idness of their simulation on that trial (2.5 sec) and how
accurate they felt their simulation was with respect to
what the target person would actually do in that context
(2.5 sec). These ratings were averaged to form a “confi-
dence” composite. The six contexts were fully crossed
with the 20 target people for a total of 120 trials divided
across six runs of 400 sec each. Note that each combina-
tion of target person and context occurred only once,
making the task a unique trial design. Each target person
was shown only once within each run, but the position of
a given target person within a run was randomly deter-
mined (independently for each participant). The order
of contexts was independently randomized for each
target person within each participant. All experimental
tasks were presented using Python 2.7 and the PsychoPy
package (Peirce, 2007).

Imaging Procedure

Functional gradient-echo echo-planar images were ob-
tained from the whole brain (43 interleaved slices of
2.5 mm thickness parallel to the AC–PC line, repetition
time = 2500 msec, echo time = 30 msec, flip angle =
90°, in-plane resolution = 2.51 × 2.51 mm, field of view =
216 mm2, matrix size = 86 × 86 voxels, 160 measure-
ments per run) using a parallel imaging protocol and
prospective acquisition correction. A high-resolution T1-
weighted structural scan (multiecho MPRAGE, 1.195 mm
isometric voxels, matrix size 192 × 192 voxels, 144 sagit-
tal slices) was also acquired from each participant. Imag-
ing data were acquired at the Harvard University Center
for Brain Science with a 3-T Siemens Tim Trio scanner
(Siemens, Erlangen, Germany) using a 32-channel head
coil. Functional images were preprocessed and analyzed
using SPM8 (Wellcome Department of Cognitive Neurol-
ogy, London, UK) with the SPM8w extension (https://
github.com/ddwagner/SPM8w) and in-house scripts in
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MATLAB (The MathWorks, Natick, MA) and R (www.R-
project.org/). Data were first spatially realigned via rigid
body transformation to correct for head motion and then
normalized to a standard anatomical space (2 mm iso-
tropic voxels) based on the ICBM 152 brain template
(Montreal Neurological Institute). The GLM was used to
analyze each participant’s data in preparation for MVPA.
Two separate GLMs were run to allow for analysis at dif-
ferent levels: with respect to individual trials and at the
level of target people.
In the first of these GLMs, each trial in the experiment

was modeled separately (120 conditions of interest) as a
boxcar regressor starting at the beginning of the target
person presentation period and ending at the comple-
tion of the imagination period (12.5 sec). Note that
modeling only this period of each trial allowed for rela-
tively long (7.5 sec) intertrial intervals, minimizing multi-
collinearity in the design matrix. The boxcars regressors
were convolved with a canonical hemodynamic response
function and entered into the GLM. The model also in-
cluded additional covariates of no interest: run trends
and means, six motion realignment parameters, and out-
lier time points. The second GLM included only 20 con-
ditions of interest, corresponding to the 20 personally
familiar target people. Thus, each boxcar regressor mod-
eled six trials, corresponding to imagining each target
person in each of the six contexts presented. Otherwise,
this GLM proceeded identically to the first, with the
exception of adding temporal and dispersion derivatives
of the conditions of interest to the model.

Searchlight Analyses

We extracted local patterns of neural activity from
throughout the brain using an approximately spherical
searchlight with four voxel radius (∼9 mm). To ensure
that the edges of the brain were included, searchlights
with up to half of their voxels implicitly masked (i.e., out-
side the brain) were analyzed. Thus, searchlight size var-
ied between 128 and 257 voxels. For each voxel in the
brain, patterns of activity (t value maps from the first
GLM) were extracted from the surrounding searchlight
area for each condition of interest (trial in the experi-
ment). We estimated the similarity between activity pat-
terns by calculating the Pearson correlation between the
values in each pair of patterns. These estimates were
then rank transformed and regressed onto two binary
variables encoding our hypotheses. Rank transformation
is a recommended procedure for RSA, as it helps mitigate
large-scale differences and violations of distributional
assumptions that may otherwise compromise results
(Kriegeskorte, Mur, & Bandettini, 2008). The person-
representation variable predicted high similarity between
trials with the same target person and low similarity
between trials with different targets. Analogously, the
context-representation variable predicted high similarity
between trials with the same context and low similarity

between trials with different contexts. We also included
a similarly constructed run nuisance variables to control
for pattern similarity between trials in the same run.

This regression analysis produced whole-brain unstan-
dardized beta maps for each participant. These maps
were subjected to smoothing with a Gaussian kernel
(4 mm FWHM) to maximize intersubject alignment and
were then entered into a random effect analysis across
participants using one-sample t tests. This analysis was
corrected for multiple comparisons using a MATLAB
implementation (https://github.com/markallenthornton/
MatlabTFCE) of maximal statistic permutation testing with
threshold-free cluster enhancement (Smith & Nichols,
2009). The family-wise error rate was strictly controlled
across three random effects t tests from the two search-
light analyses (the person- and context-representation
mappings described above and the confidence analysis
described below) by setting the permutation-corrected
critical p value within each map to a Bonferroni-adjusted
α = .0167. Results were rendered on the cortical surface
using Connectome Workbench (Marcus et al., 2011).

Person-pattern typicality was estimated for each trial by
averaging the similarity values between the trial in ques-
tion and the other trials involving the same target. High
typicality for a trial thus meant that the pattern for this
trial was highly correlated with the patterns for the other
trials on which the same target was presented. Each mea-
sure in the pattern typicality vector was the mean of five
correlations (since each person was imagined in six con-
texts total). For each searchlight region, the pattern typical-
ity vector was entered into a multiple regression as the
dependent variable to be predicted by the confidence com-
posite ratings. Additional nuisance regressors for target
person were also included to control for the possibility that
some targets might elicit more reliable patterns than
others. As with the primary searchlight, this analysis pro-
duced whole-brain unstandardized beta maps for each par-
ticipant. These maps were smoothed with a 4-mm FWHM
Gaussian and then entered into random effects t tests, with
multiple comparisons corrected as described above.

Feature-selected Representation Similarity Analysis

As reported in detail below, the person-representation
searchlight analysis revealed an extended set of regions
containing fine-grained person-specific activity patterns.
The statistically significant regions in this analysis were
used as a mask to select voxels for further analysis. Note
that this selection process, despite drawing on dependent
data, does not constitute statistically biased “double-
dipping” for the purposes of the analyses we apply. This
is because the independent variables that will be used to
model the feature-selected patterns (i.e., participant rat-
ings on the 16 social dimensions) were not themselves in-
volved in voxel selection. Although on average this
procedure will increase the observed size of real effects
by disattenuating correlations, it will not systematically

Thornton and Mitchell 1587



lead to the generation of spurious relationships between
the models and the data. To avoid circularity, we do not
test any models using the full deconvolution (trial-wise)
GLM within this mask.

In addition to this feature selection approach—
which should produce minimally reliability-attenuated
estimates—we also repeated the same set of analyses
using an independently defined mask from previous re-
search (Tamir et al., 2016). The voxels in this mask were
chosen by univariate differentiation of mental state con-

cepts. Using this independent mask justifies stronger
claims about the localization of representations within
the regions sensitive to mentalizing per se and allows us
to test for the presence of person-specific patterns at the
trial level without circularity. This alternative feature
selection approach also allows us to demonstrate the un-
biased nature of our reliability-based feature selection.
For the 15,849 retained voxels in the reliability selec-

tion (Figure 1A and Table 1) and the 25,215 voxels in
the independent mask (Tamir et al., 2016), patterns of

Figure 1. Person- and context-specific patterns. Consistent patterns of neural activity were elicited in the red/yellow regions during mental
simulation for target people (A) or the context in which they were imagined (B). Results from searchlight mapping were combined across
participants via t test and corrected for multiple comparison via maximal statistic permutation testing with threshold free cluster enhancement.

Table 1. Peak Voxel and Cluster Size for All Regions Obtained from the Searchlight Mappings ( p < .05, Corrected)

Map/Anatomical Label x y z Volume Peak p

Person-specific Patterns

Medial parietal cortex/right TPJ −2 −45 22 8651 <.0001

Medial pFC −18 25 44 5256 .0045

Left TPJ −44 −51 18 883 .0121

Right inferior frontal gyrus 40 39 4 651 .0115

Right STS 48 −33 −6 391 .0130

Right posterior insula 30 −25 12 17 .0163

Context-specific Patterns

Medial parietal cortex/left superior occipital cortex −6 −53 14 5968 .0010

Right superior occipital cortex 32 −75 32 207 .0121

Confidence Pattern Typicality Correlation

Precuneus 14 −65 38 551 .0053

Posterior/mid-cingulate 2 −21 34 372 .0120

Precuneus 22 −51 44 15 .0158

Coordinates refer to Montreal Neurological Institute stereotaxic space. Volume refers to voxel number. Peak p indicates threshold-free cluster
enhancement-corrected p value at peak.
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neural activity (unstandardized beta maps) were ex-
tracted from the second GLM: for each participant, one
pattern of activity across the feature-selected regions
for each target person. Similarity estimates between
these neural representations were again calculated by
Pearson correlating the activity patterns. These estimates
were then Spearman correlated with predictions of inter-
target similarity made by models described above: the
five theories of person perception, the two measures of
holistic similarity, and the Euclidean space described by
in-scanner ratings of vividness and accuracy, averaged by
target person. Predictions of (dis)similarity between tar-
gets for each of the five theories of person perception
were calculated by taking the Euclidean distance between
ratings of target people within the n-dimensional space
described the dimensions of the theory. In the case of
the basic social groups theory, because the distance be-
tween categories is not a calculable quantity, the dissim-
ilarity matrix was binary, with values indicating whether a
pair of targets belonged to the same (sex, age, or race)
group or not.
This RSA generated correlation coefficients for each of

the seven models within each participant. The statistical
significance of these results was assessed through com-
plementary direct and indirect testing procedures. One-
sample t tests across participants were conducted on the
coefficients for each model. Fisher’s r-to-z transformation
was applied before the correlations before conducting
these t tests. Additionally, nonparametric percentile boot-
strapping was used to obtain robust 95% confidence in-
tervals around the mean correlation coefficient for each
model. Both testing procedures were conducted sepa-
rately for the two feature selection methods.
The independent feature selection method allowed us

to perform an additional test of our primary hypothesis:
that patterns of activity in the social brain network en-
code personally familiar people. Repeating this analysis
in the feature-selected regions had two primary advan-
tages: It allowed for the unbiased estimation of a single
summary measure of effect size, and it allowed us to ex-
amine whether person-specific patterns persist across
spatial scales in the social brain network. This analysis
was achieved by repeating the multiple regression RSA
described above. However, in this case, the entire set
of voxels in the independent mask was used to produce
a single results neural similarity matrix for each partici-
pant. Results were combined across participants via ran-
dom effects t tests on the regression coefficients from
each participant. To determine whether this analysis de-
pended on the same fine-grained patterns as the search-
light analysis or instead relied on coarse-grained patterns,
it was repeated with unsmoothed and smoothed patterns
of brain activity. The heavy degree of smoothing applied
in the latter case (18 mm FHWM, equal to the diameter of
the searchlight) served to ensure that any effects ob-
served could be attributed to coarse-grained interregion-
al patterns rather than fine-grained intraregional patterns.

RESULTS

Searchlight Results

Consistent patterns of neural activity for familiar others
were observed across wide areas of cortex (Figure 1A).
These areas primarily overlapped with regions previously
implicated in social cognition, including medial pFC (dor-
sal and ventral), the TPJ and STS bilaterally, and most
robustly, medial parietal cortex including portions of
both precuneus and posterior cingulate (Table 1). Person-
specific patterns were also observed in right ventral lateral
pFC, bilateral dorsal pFC, medial precentral gyrus, and a
portion of the posterior insula.

Context-specific patterns were observed in a more cir-
cumscribed set of regions (Figure 1B). These included
medial parietal cortex and bilateral superior occipital
cortex (Table 1). Medial parietal cortex—precuneus in
particular—has long been implicated in mental imagery
(Cavanna & Trimble, 2006; Fletcher et al., 1995), which
may account for its role in representing context. The oc-
cipital areas may overlap with or be adjacent to the trans-
verse occipital sulcus, which has been implicated in
scene perception (Bettencourt & Xu, 2013). This would
be consistent with their implication in context individua-
tion in this study. Note that the only region of overlap
between person- and context-specific patterns was in
the medial parietal cortex.

A secondary searchlight analysis aimed to assess the re-
lation between person-specific pattern typicality and by-
trial ratings of confidence (accuracy and vividness). A
positive relation between pattern typicality and confi-
dence was detected in three adjacent regions within me-
dial parietal cortex (Table 1). The most anterior of these
regions was placed along the posterior cingulate gyrus,
whereas the other two areas were located primarily with-
in the precuneus (Figure 2). Within these regions, the
more typical a pattern was for a particular target the more
confidence participants would express in their simulation
on a given trial. This result suggests both neural and psy-
chological interpretations. Neurologically, it suggests that
medial parietal lobe plays a particularly important role in
actively “running” mental simulations or at least making
them consciously available. Psychologically, this result
suggests that people may use the degree to which they
can integrate idiosyncratic person knowledge into a sim-
ulation as an indicator of simulation validity.

Feature-selected Representational
Similarity Results

Person-specific activity patterns were extracted from the
significant voxels in the corresponding searchlight analysis
(Figure 1A) or using an independent mask for voxels sen-
sitive to mental state representation (Tamir et al., 2016).
The similarity between person-specific patterns was mod-
eled in terms of feature sets via RSA. The results of this
analysis provided consistent evidence that simulation
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confidence and holistic explicit similarity judgments pre-
dicted the neural representations of personally familiar
others (Figure 3).

The average confidence (vividness and accuracy) of
simulations involving each target was the most robust
predictor of pattern similarity for both reliability-selected
(mean r = .08, d = .66, p = .005) and independent
(mean r = .09, d = .82, p = .0007) versions of the anal-
ysis. Although not contributing theoretical detail, self-
reported behavioral ratings of holistic similarity also

predicted pattern similarity in both the reliability selected
regions (mean r= .03, d= .48, p= .03) and the indepen-
dently selected regions (mean r = .03, d = .58, p = .01).
Holistic implicit similarity was descriptively weakly
positively associated with pattern similarity, but not at
a significant level for either type of feature selection
( ps > .1).
Results indicated weak evidence for the influence of

several theories of person perception on neural pattern
similarity (Figure 3). Egocentrism appeared to have a sig-
nificant effect in the independent regions (mean r = .04,
d = .50, p = .03) but was slightly less correlated with
pattern similarity in the reliability selected areas and
was not a statistical significant predictor therein (mean
r = .03, d = .34, p = .12). Big 5 personality traits pre-
dicted pattern similarity at a marginally significant level
under both the reliability-based (mean r = .04, d =
.41, p = .06) and independent (mean r = .04, d = .36,
p = .098) feature selection regimes. Relational models
theory was a significant predictor of target pattern simi-
larity in the reliability-based analysis (mean r = .05, d =
.49, p= .03) but was only marginally significant for voxels
within the independent mask (mean r = .05, d = .40,
p = .07). Stereotype content was a marginally significant
predictor, though only in the independent feature selec-
tion analysis (mean r = .04, d = .38, p = .08) and not the
voxels chosen via reliability (mean r = .02, d = .19, p =
.36). Similarity in terms of basic social groups (age, race,
and sex) was slightly negatively correlated with pattern
similarity, though the results were not significantly differ-
ent from zero.
Despite some differences in categorical statistical sig-

nificance due to near-threshold p values, the representa-
tionally similarity analysis results were generally highly
similar across the two feature selection methods. Direct
comparison between the theories was not undertaken, as
the study was not designed with sufficient power for that
purpose. Descriptive comparison of the models should
also be approached cautiously, as differences in effect
size may result from differences in reliability across
models or—in the case of the accuracy and vividness
judgments—greater psychological proximity to the
simulations.

Figure 2. Pattern typicality
predicts confidence. The
regions in red showed a positive
relation between the
instatement of typical person-
specific patterns and by-trial
ratings of simulation vividness
and perceived accuracy. Results
from searchlight mapping were
combined across participants
via t test and corrected for
multiple comparison via
maximal statistic permutation
testing with threshold free
cluster enhancement.

Figure 3. RSA. Person-specific patterns of neural activity across the
feature-selected voxels were modeled in terms of a number of possible
predictors. Two different forms of feature selection were used:
Reliability-based selection was performed by using voxels that
significantly encoded target people in the earlier searchlight results, and
an independent mask of voxels sensitive to mental state representation
was taken from earlier work (Tamir et al., 2016). Results were
combined across participants via t tests on r-to-z transformed
correlations. Error bars indicate 95% confidence intervals from
percentile bootstraps of the mean (untransformed) correlation values.
Dashed vertical lines separate models derived from different
procedures: The five models on the left were based on self-report
ratings, holistic similarity measures were calculated based on RT and
choices in a triplet similarity judgment task, and the confidence model
was derived from in-scanner ratings following each trial.
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Figure 4. Descriptive mapping of theory effect sizes. Each map reflects the across-participant Cohen’s d of one of the theories of person perception
tested in the feature-selected RSA: (A) social groups, (B) egocentrism, (C) Big 5 personality traits, (D) relational models theory, (E) stereotype
content model, (F) holistic implicit similarity, (G) holistic explicit similarity, and (H) confidence. Results reflect a whole-brain searchlight, masked by
the voxels found to contain person-specific information in the primary searchlight analysis (i.e., the same voxels used in the reliability-selected
RSA). The mapping is descriptive rather than inferential and thus is not corrected for multiple comparisons across voxels.
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Pattern similarity on a trial-wise basis was analyzed
within the voxels selected by the independently-defined
mask. This multiple regression RSA mirrored the primary
searchlight analysis described above, although over a
larger spatial scale. Within these areas—previously iden-
tified as sensitive to mental state representation (Tamir
et al., 2016)—we found that pattern similarity between
experimental trials reflected the influence of both target
person identity (d = .89, p = .0003) and context identity
(d = .78, p = .001). Although not a hypothesis of sub-
stantive interest, we also note that the standardized effect
of run on pattern similarity was very large (d= 2.84). The
substantive effects were very similar in magnitude when
heavily smoothed patterns were instead input into the
RSA: person identity d= .89, p= .0003 and context iden-
tity d = .68, p = .004. These results indicate that the in-
formation contained in fine-grained patterns in the
searchlight analysis is recapitulated at the coarse spatial
scale of interregional differentials in the social brain
network.

To further probe this result, we attempted to create a
descriptive mapping of which voxels contributed most to
the representation of person identity in the smoothed ac-
tivity patterns. To this end, we repeatedly divided the in-
dependently feature-selected regions into 252 random
parcels of approximately 100 voxels each. We repeated
the person- and context-identity regression RSA using
pattern similarity calculated separately across with each
parcel of voxels. The regression coefficients could be tab-
ulated on a voxelwise basis across iterations to determine
the typical contribution of each voxel person-encoding
coarse-grained patterns. Within each participant, the con-
tribution of individual voxels could be calculated to arbi-
trary reliability across repeated simulation. The average
split-half reliability with respect to voxels across 1000 par-
cellations was .83. However, the location of these voxels
was not at all consistent across participants: The split-half
reliability with respect to voxels across 23 participants
was −.06. This result suggests that the coarse-grained
patterns encoding person identity may rely on specific
voxels within each brain, but if so, the location of these
voxels is idiosyncratic. In other words, the spatial distri-
bution of person-specific pattern codes appears to be
uniformly distributed across the social brain network, at
least at the level of the population.

We also computed a voxelwise descriptive mapping of
standardized effect sizes for each of the substantive psy-
chological theories tested in the feature-selected RSA.
This analysis was conducted by repeating analysis testing
these theories exactly as described above, but within the
context of a searchlight analysis. The resulting correlation
maps reflected the performance of each model in ex-
plaining pattern similarity within searchlights centered
at each voxel in the brain. The maps were smoothed with
a 4-mm FWHM kernel and then combined across partic-
ipants using the formula for Cohen’s d. The resulting
group maps were masked by the significant results in

the primary person-representation searchlight analysis
(Figure 1), on the principle that meaningful theory fits
could only occur in regions where person-specific pat-
terns actually existed. The results (Figure 4) provide an
indication of which regions may have particularly contrib-
uted to the performance of each theory in the feature-
selected RSA.

Behavioral Results

During the imaging task, participants responded to the
vividness probe on 92% of trials on average (SD =
8.1%) and responded to the accuracy probe on 95% of
trials on average (SD = 6.0%). On average, 89% of trials
had responses on both items and 98% of trials had re-
sponses on at least one item. The high response rates in-
dicate that participants were consistently engaged with
the task, especially considering the brief response win-
dows. The mean vividness rating was 3.41 and the aver-
age of the standard deviations within each participant
was .94. The mean accuracy rating was 3.30, and the
average within-participant standard deviation was 1.07.
The average correlation between vividness and accuracy
was .67 (SD = .16), suggesting that these measures
tapped related phenomenon, but were not completely
redundant. Participants’ ratings of targets yielded corre-
lated results across several different conceptions of per-
son perception (Figure 5), indicating that these social
theories made comparable predictions.

Figure 5. Correlations between potential predictors of neural
similarity. Behavioral and self-report measures of intertarget similarity
used in RSA were Spearman correlated with each other within each
participant. Mean correlations across participants are shown in the
heatmap, with larger values in warmer colors.
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DISCUSSION

This study examined the neural representation of person-
ally familiar people. Results of searchlight MVPA indicated
that, during mental simulation, target person-specific pat-
terns of neural activity were widely distributed across the
social brain network. Person-specific activity patterns
overlapped with context-specific patterns in only one
area of the brain—medial parietal cortex—suggesting
that this region may play a key role in combining person-
specific knowledge with information about context in
mental simulations. The central role of medial parietal cor-
tex was further underscored by the fact that portions of this
region showed a positive relation betweenpattern typicality
and metacognitive perceptions of confidence in simula-
tions of others. This relation suggests that the degree to
which person knowledge is integrated into simulations by
medial parietal cortex serves as a cue to how confident one
should feel about those simulations—that is, how likely
they are to predict the course of real world events. Finally,
we observed that several measures of interpersonal similar-
ity weakly predicted neural pattern similarity across brain
regions that manifest person-specific patterns. The most
consistent of these predictors were confidence in simula-
tions (vividness and accuracy) and explicit (self-reported)
perceptions of holistic similarity between target people.
The question of whether neural processes and represen-

tations are confined to discrete modular regions or are dis-
tributed across larger cortical networks has long been of
interest to cognitive neuroscientists (de Beeck et al.,
2008). The present research considered a particular social
cognitive version of this issue: that is, whether person-
specific information is widely distributed or confined to a
single repository. Althoughmany previous investigations of
familiar people have concluded that such knowledge is
broadly distributed (Szpunar et al., 2014; Cloutier et al.,
2011; Gobbini et al., 2004), a few have emphasized the role
of ventral medial pFC in particular (Heleven & Van
Overwalle, 2016; Welborn & Lieberman, 2015). Our results
fall firmly in line with former set of findings.
The current results indicate the presence of person-

specific patterns in the social brain network, as defined
by sensitivity to differences in others’ mental states by a
previous study. However, it is worth noting that not all of
the regions implicated by our searchlight analysis are con-
tained within the social brain as commonly defined. For in-
stance, person-specific patterns were also detected within
portions of the midcingulate, precentral gyrus, and insula
—none of which are generally taken to be socially specific.
Person-specific patterns in medial pFC also extended to
quite posterior coordinates, overlapping considerably with
the ACC. Given ACC’s role in error and conflict monitoring
(Kerns et al., 2004), this might suggest a role for ACC in
keeping social simulations “on track”—that is, maximally
plausible for individual target people.
The results of this study emphasize the central role

that medial parietal cortex, including the precuneus

and posterior cingulate, plays in mental simulations of
other people. We have observed that (1) this region sup-
ports person-specific representations of familiar others,
(2) this region also represents context-specific informa-
tion, and (3) the presence of typical person-specific pat-
terns in this region predicts vividness and accuracy
judgments. The overlap between person and context rep-
resentation hints that this region may contribute to inte-
grating these forms of information, although this study
does not provide direct evidence of this integration.
The presence of context representations in medial parie-
tal cortex—and particularly retrosplenial cortex—is
highly consistent with previous research (Bar, 2004).
However, medial parietal cortex has been associated with
diverse mental functions over the history of cognitive
neuroscience (for a review, see Cavanna & Trimble,
2006), so it seems unlikely that it is specifically devoted
to social simulation. The pattern typicality results, how-
ever, do implicate it in supporting metacognitive access
to such simulations when they occur.

RSA of person-specific patterns in the social brain net-
work suggested several factors that may shape our men-
tal simulations of other people. Holistic interpersonal
similarity among the targets significantly predicted pat-
tern similarity, suggesting that participants did have
conscious access to some of the features contributing
to their mental simulations. Confidence (vividness and
accuracy) was the overall best predictor of neural pattern
similarity between the target people. However, the
explanatory success of confidence may be exaggerated
by the fact that these ratings were interspersed in the
simulation task itself.

Evidence for more specific influences on pattern simi-
larity was weak and inconsistent. Relational models
theory (Haslam, 2004; Haslam & Fiske, 1999), which pro-
vides a taxonomy of dyadic relationships based on their
resource exchange logic, achieved the best performance
descriptively but was still only marginally significant with-
in independently selected voxels and statistically indistin-
guishable from the other theories tested. If relational
models do shape patterns of activity during mental sim-
ulation, this would suggest that other people’s functional
role with respect to ourselves plays an important role in
determining how we imagine them acting. We also ob-
served weak evidence in support of the influence of sev-
eral other theories including the Five-Factor Model of
Personality (Goldberg, 1990; McCrae & Costa, 1987),
egocentrism, and the stereotype content model (Fiske
et al., 2002). However, the marginal nature of these find-
ings suggests we should be highly tentative in drawing
conclusions about which particular factors shape our
mental representations of personally familiar people.

Altogether, the present study used advanced neuroim-
aging methods to further our understanding of the rep-
resentation of familiar others. We found evidence for
consistent fine-grained patterns of neural activity repre-
sent individuals in large sets of personally familiar targets,
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suggesting that the brain uses a distributed population-
coding approach to support person knowledge. Moreover,
we found that these person-specific patterns are widely dis-
tributed throughout the social brain network, rather than
concentrated in a single region. Notably, we also detected
coarse-grained person- and context-specific activity pat-
terns, which spanned the social brain network. This sug-
gests that social information encoded at one spatial scale
may be recapitulated at other spatial scales. Finally, we
found evidence that medial parietal cortex may contribute
to the simulation of others’ minds in two unique ways: by
potentially integrating person and context knowledge and
by providing metacognitive cues to simulation validity.
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