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How do people understand the minds of others? Existing psycho-
logical theories have suggested a number of dimensions that
perceivers could use to make sense of others’ internal mental states.
However, it remains unclear which of these dimensions, if any, the
brain spontaneously uses when we think about others. The present
study used multivoxel pattern analysis (MVPA) of neuroimaging
data to identify the primary organizing principles of social cognition.
We derived four unique dimensions of mental state representation
from existing psychological theories and used functional magnetic
resonance imaging to test whether these dimensions organize the
neural encoding of others’ mental states. MVPA revealed that three
such dimensions could predict neural patterns within the medial
prefrontal and parietal cortices, temporoparietal junction, and ante-
rior temporal lobes during social thought: rationality, social impact,
and valence. These results suggest that these dimensions serve as
organizing principles for our understanding of other people.

social cognition | theory of mind | mentalizing | functional magnetic
resonance imaging | multivoxel pattern analysis

The human mind plays host to a panoply of thoughts, feelings,
intentions, and impressions. External observers can never

directly perceive these mental states—one can never see “nos-
talgia” nor touch “awe.” Nevertheless, humans are quite adept at
representing other people’s internal states. Our ability to per-
ceive and distinguish among the rich set of others’ mental states
serves as the bedrock of human social life. We understand the
fine differences between pure joy and schadenfreude and judge a
friend’s glee accordingly. Our ability to distinguish a partner’s
sympathy from sarcasm can make a world of difference to a re-
lationship. Legal decisions frequently hinge on nuanced mental
distinctions such as that between inattention and intentional
neglect. How do people navigate such complexities in others’
internal mental worlds?
One crucial tool for any navigator is a compass: a set of di-

mensions that help organize the contents of the world. By at-
tending to the position of others’mental states on key dimensions,
humans might reduce the complexity of others’minds to just a few
essential elements—coordinates on a map. Might navigators of
the world of mental states make use of such an intuitive compass?
Research in other domains of cognition suggests such organization
might be possible: The brain has a demonstrated capacity for
extracting and capitalizing on useful regularities in the world. For
example, our object representation system makes use of dimen-
sions such as size and animacy to organize its processing tracts (1).
Here, we explore the possibility that similar principles may orga-
nize our representations of other people’s minds.
Decades of research in social cognitive neuroscience, primarily

using functional magnetic resonance imaging (fMRI), have al-
ready implicated a well-defined set of brain regions in the pro-
cess of thinking about mental states: Thinking about the lives and
minds of others reliably engages a network including the medial
prefrontal cortex (MPFC), medial parietal cortex (MPC), tem-
poroparietal junction (TPJ), superior temporal sulcus (STS), and
the anterior temporal lobe (ATL) (for a review, see refs. 2 and 3).

However, this relatively young field has yet to explain how the
social brain’s hardware processes the richness and complexity of
others’ mental states. Fortunately, research in psychology supplies
a set of theories regarding how people might organize their
knowledge of mental states. The dimensions of these theories
include valence and arousal (4, 5), warmth and competence (6, 7),
agency and experience (8), emotion and reason, mind and body
(9), social and nonsocial (2, 10, 11), and uniquely human and
shared with animals (12). Any of these dimensions might plausibly
play a role in organizing our understanding of mental states. But
which, if any, do we spontaneously use during mentalizing? If a
dimension actually matters to the way people typically think about
others’ mental states, we should see evidence that the brain or-
ganizes its activity around that dimension. However, merely lo-
cating where in the brain mental state processing occurs—as social
neuroscience has done so well already—cannot tell us how these
regions represent mental states.
Fortunately, new analytic techniques in functional neuro-

imaging, under the umbrella of multivariate or multivoxel pattern
analysis (MVPA), enable us to bridge these levels of analysis.
MVPA examines activity in distributed sets of voxels, allowing for
discrimination between stimuli by their associated patterns of ac-
tivity even when absolute magnitudes of activity remain constant.
In this study, we use the form of MVPA known as representational
similarity analysis (13) to test which psychological dimensions
organize people’s understanding of mental states. These analyses
work by measuring the extent to which neural patterns of activity
can be predicted from theories of representational organization.
To illustrate, the dimension “arousal” would predict that “ecstasy”
and “rage” are represented very similarly in the brain because both
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are similarly intense mental states. In contrast, the dimension “va-
lence” would predict that “ecstasy” and “rage” are represented very
differently in the brain because one state is very positive, whereas
the other is very negative. Both predictions can be tested by mea-
suring the extent to which patterns of neural activity elicited by
thinking about a person in ecstasy are similar to those elicited by
thinking about a person in a fit of rage. Each dimension makes
thousands of predictions about the similarity of each mental state
compared with each other mental state; representational similarity
analysis allows us to assess the accuracy of all of these predictions
simultaneously. Thus, we can test which psychological dimensions
capture the way the brain encodes others’ mental states.

Results
Refining Psychological Theories. We used 16 dimensions extracted
from the psychological literature as a starting point for developing
a theory of mental state representation: positive, negative, high
arousal, low arousal, warmth, competence, agency, experience,
emotion, reason, mind, body, social, nonsocial, shared, and
unique. Note that these initial dimensions are nominal—in many
cases they merely represent different poles of the same underlying
variable—but we initially analyze them separately to remain
maximally agnostic to the possible covariance between them. To
determine what predictions each dimension would make about
mental state representation—that is, which mental states were
predicted to be similar or different with regard to each dimension—
we used a large online sample (n = 1,205) to measure the position
of 166 mental states on each dimension. Ratings across many
of the dimensions were highly correlated (Fig. S1). We distilled
the overlapping intuitions embodied in the original dimensions
down to a smaller set of nonredundant dimensions using principal
component analysis (PCA).
The PCA revealed a much simpler set of four orthogonal di-

mensions, each with easily interpretable loadings (Fig. 1). The first
component, which we term “rationality,” loaded highly in one
direction on the original dimensions experience, emotion, and
warmth, and loaded highly in the opposite direction on compe-
tence, reason, and agency. States such as embarrassment and ec-
stasy occupy one pole of this dimension whereas the other pole is
occupied by states such as planning and decision. The second
component, which we term “social impact,” loaded positively on
the dimensions high arousal and social, and negatively on low
arousal and nonsocial. States such as dominance, friendliness, and
lust rate highly on social impact whereas sleepiness and pensive-
ness rate as minimally impactful. The third component, which we
term “human mind,” loaded positively on unique to humans and
mind, and negatively on shared with other animals and body.
States high in human mind include those like imagination or self-
pity whereas states such as fatigue and stupor are considered more
physical in nature. The fourth component, which we term “va-
lence,” loaded positively on positive and warmth, and negatively
on negative. Positive states include affection and satisfaction
whereas negative states include disgust and disarray. From each
PCA dimension, we derived predictions about the similarity of
each mental state to the others by calculating their psychological
similarity as the absolute difference between the positions of
mental states on each dimension. These predictions were tested
against the neural data using representational similarity analysis,
allowing us to see whether patterns of neural activity elicited by
thinking about mental states reflected each dimension.

Neural Patterns Representing PCA Dimensions. Participants were
scanned while performing a task designed to elicit their thoughts
about 60 mental states (Table S1). On each trial, participants saw
the name of a mental state (e.g., “awe”) and decided which of two
scenarios would better evoke that mental state in another person
(e.g., “seeing the pyramids” or “watching a meteor shower”). This
task allowed us to estimate neural representations for each of 60
mental states by averaging the patterns elicited across the varied
scenarios. We estimated the pairwise similarity of the neural
representations of the 60 states by correlating their activity patterns.

These measures of neural similarity were then regressed onto
the predictions of psychological similarity made by the four PCA-
derived dimensions. For example, if mental states that rated
similarly on the valence dimension (such as “affection” and
“inspiration”) also elicited similar neural patterns of activity, the
regression would reveal that valence was a strong predictor of
neural pattern similarity. We would take this result as evidence that
mental state representations—embodied by these neural patterns—
were indeed organized by valence. This process was conducted re-
peatedly using local patterns extracted from throughout the brain of
each participant. Regression maps for each dimension were com-
bined across participants using t tests, thus revealing which dimen-
sions reliably organized mental state representations in each region
of the brain.
This analysis revealed that three PCA-derived psychological di-

mensions organize the way the brain represents mental states. Most
regions implicated in mental state representation fell within a net-
work of regions previously implicated in social cognition (Fig. 2 and
Table S2). The “rationality” dimension predicted the similarity of
patterns of neural activity in portions of the dorsolateral prefrontal
cortex (DLPFC), ventral lateral prefrontal cortex (VLPFC), dorsal
medial prefrontal cortex (DMPFC), lateral orbitofrontal cortex
(OFC), and anterior temporal lobe (ATL) bilaterally (Fig. 2A). The
“social impact” dimension robustly predicted neural pattern simi-
larity in a widespread set of regions, including significant clusters in
the DLPFC, VLPFC, DMPFC, VMPFC, anterior cingulate cortex
(ACC), posterior cingulate cortex (PCC), precuneus, temporopar-
ietal junction (TPJ) extending into the posterior superior temporal
sulcus (pSTS) and ATL (Fig. 2B). The valence dimension predicted
neural pattern similarity in a completely left-lateralized set of re-
gions including the DLPFC, VLPFC, and TPJ (Fig. 2C). Finally, the
“human mind” dimension captured a spatially restricted set of
neural patterns, predicting representations in only a single region in
the posterior parahippocampal cortex (Fig. 2D).
This analysis identified regions of the brain within which local

patterns of activity were predicted by the PCA-based models. To
test whether relevant patterns of activity were represented in a
more distributed manner, we conducted a network-wide analysis.
In this analysis, we extracted a single set of activity patterns from
across the entirety of a neural network sensitive to mental state

Fig. 1. Principal component loadings. Principal component loadings of the 16
existing theoretical dimensions onto the optimal four-dimensional solution.
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content. As with the whole brain analysis, the neural similarity of
each pair of mental states was estimated, and the results were
correlated with the predictions of the PCA-derived dimensions.
Results showed that three dimensions significantly predicted
network-level patterns: rationality [r = 0.16; 95% bootstrap
confidence interval (CI) (0.06, 0.20)], social impact [r = 0.21;
95% bootstrap CI (0.12, 0.26)], and valence [r = 0.12; 95%
bootstrap CI (0.04, 0.17)]. The human mind dimension [r = 0.05;
95% bootstrap CI (−0.01, 0.10)] did not (Fig. 3B). Results of a
multidimensional scaling analysis (Fig. S2) allowed us to esti-
mate that the dimensions of rationality, social impact, and va-
lence collectively account for approximately one-third of the
variance in neural patterns underlying mental state representa-
tion (weighted total R2 = 0.33) (SI Text). Disattenuating this
value by dividing it by the reliability of the neural similarity (α =
0.69) yielded a final R2 = 0.47. The results of the network
analyses were highly robust to different analytic approaches (SI
Text). Statistically controlling for the influence of scenario con-
creteness, complexity, and familiarity did not produce any quali-
tative changes in the outcomes. Using independent component
analysis (ICA) instead of PCA to generate dimensions, conducting
the analysis with Spearman rank correlations, and using a meta-
analysis-based feature selection method all produced very similar
results. Further, results were not contingent on the use of statistical
significance: The same three dimensions emerged from a model
selection technique based on cross-validation performance (14)
(Fig. S3). Finally, allowing two-way interactions between dimensions
did not alter the significance of the main effects although three
significant interactions were observed: human mind with rationality,
human mind with social impact, and social impact with valence.

Neural Patterns Representing Theoretical Models. Although the
primary purpose of this study was to discover the organization of
mental state representation, we also tested whether the seven
psychological theories from which we drew our PCA dimensions
could predict neural representations of mental states. To do so,
we repeated the whole brain and network-level representational
similarity analysis with the original psychological dimensions.
Whole brain analyses on each of the seven extant theoretical
models revealed regions of the brain within which patterns of
neural activity were predicted by each model (Fig. 4 and Table
S3). The valence and arousal model (Fig. 4A) predicted patterns
of activity in a number of regions, including the PCC, ACC, bi-
lateral lateral temporoparietal cortex, left lateral and anterior
temporal cortex, bilateral DLPFC, and both rostral and caudal
portions of the DMPFC. The warmth and competence model
(Fig. 4B) predicted patterns of activity in the left TPJ, rostral and
caudal DMPFC, bilateral ATL, bilateral VLPFC, and bilateral
DLPFC. Agency and experience (Fig. 4C) and emotion reason
(Fig. 4D) produced very similar results, an unsurprising outcome
given the degree of correlation between these models. These
models both predicted patterns of activity in the VMPFC, rostral
DMPFC, bilateral ATL, bilateral VLPFC and DLPFC, and
portions of the lateral temporal cortex. The mind and body di-
mensions (Fig. 4E) predicted patterns in a proximal but distinct
set of regions to those discussed above, including the ACC, PCC,
TPJ, and portions of the lateral prefrontal cortex. Sociality (Fig.
4F) and human uniqueness (Fig. 4G) models both predicted
much less extensive clusters of activity, with both appearing in
the precuneus and uniqueness also appearing in a posterior
portion of the parahippocampal gyrus.

Fig. 2. Searchlight results indicating regions
sensitive to the (A) rationality, (B) social impact,
(C) valence, and (D) human mind of others’
mental states. Within the yellow/orange re-
gions, the similarity of patterns elicited by
thinking about mental states can be explained
in terms of the corresponding social cognitive
dimension extracted from existing theories via
PCA (P < 0.05, corrected). Representational
similarity searchlight analyses were conducted
on each participant and combined through
one-sample random-effects t tests.

Fig. 3. Network-wide representational similarity analysis. (A) Whole brain ANOVA used for feature selection (voxelwise P < 0.0001). Different mental states
reliably elicited different levels of univariate activity within these regions. (B) Bar graphs of model fits for dimensions derived via principal component analysis
from existing psychological theories. (C) Bar graphs of model fits for existing psychological models. All model fits are given in terms of Pearson product-
moment correlations between neural pattern similarity and model predictions, with error bars indicating bootstrapped SEs. Note that bars in B refer to
individual dimensions derived via PCA whereas bars in C indicate the performance of full multidimensional theories. The theoretical advantage of the
synthetic model presented here can thus be seen by comparing any one bar in C with the combination of the three significant bars in B.
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Finally, we tested the degree to which of each of the seven
theoretical models predicted patterns of neural activity in a dis-
tributed manner. At the network level, the predictions of five of
seven theoretical models were significantly correlated with neural
similarity (Fig. 3C)—valence and arousal [r = 0.19, 95% bootstrap
CI (0.10, 0.23)], warmth and competence [r = 0.16, 95% bootstrap
CI (0.07, 0.21)], agency and experience [r = 0.19, 95% bootstrap CI
(0.09, 0.22)], emotion and reason [r = 0.17, 95% bootstrap CI
(0.06, 0.22)], and mind and body [r = 0.18, 95% bootstrap CI (0.09,
0.22)]—all with statistically indistinguishable effect sizes. Two
theoretical models did not predict network level patterns: social
vs. nonsocial [r = 0.04, 95% bootstrap CI (−0.03, 0.09)] and shared
vs. unique [r = 0.03, 95% bootstrap CI (−0.003, 0.06)].

Discussion
The current study used fMRI and representational similarity anal-
ysis to explore the dimensions that organize our representations of
other people’s internal mental states. We used dimensions from the
existing psychological literature on mental states as a springboard
for generating four nonredundant, easily interpretable dimensions
and tested which dimensions organize patterns of neural activity
elicited by considering others’ mental states. Results indicated that
neural activity patterns within the network of regions sensitive to
others’ mental states are attuned to three dimensions: rationality,
social impact, and valence. These dimensions account for nearly
half of the variation in the neural representation of mental states,
constituting the most comprehensive theory to date regarding
how we understand others’ minds.
What significance do these three dimensions hold? One of

these dimensions, termed “rationality,” has arisen across dispa-
rate philosophical and psychological traditions. Here, it derives
from theories in the domain of social cognition, including pri-
marily experience and agency (8), warmth vs. competence (6, 7),
and emotion vs. reason, an idea extending back at least as far as
Plato. This dimension may also closely mirror theories outside
the social domain, such as active vs. passive (15), system I vs.
system II (16), and reflective vs. reflexive (17). The ubiquity of
this distinction hints that it may reflect a deep principle of cog-
nition. The results of the present study align with previous
MVPA work (18) in suggesting that the brain spontaneously
attunes to others’ rationality. Knowing whether a person is ex-
periencing a rational state or not may be particularly useful for
certain social calculations. For example, it seems plausible that
rationality assessments may help guide our decisions about
whether people are responsible for their actions. These decisions
in turn would shape the degree to which we take those actions
into account during impression formation. These functions have
been repeatedly associated with the DMPFC, one of the regions
implicated in representing rationality (19–22).
A second dimension, termed “social impact,” combines two

well-known concepts: arousal and sociality. Social impact is the

most widely represented of the three dimensions identified here,
suggesting that it may serve as a crucial ingredient in many dif-
ferent social computations. We did not anticipate the degree of
covariation that these constructs displayed although this shared
variation across seemingly disparate dimensions is clearly impor-
tant, because sociality alone explains little neural pattern similar-
ity. Validating and exploring the nature of this construct should be
a topic for future research. Here, we suggest one possible expla-
nation: A key property of another’s mental state is how much that
state is likely to affect one’s self. For example, intense (i.e., high
arousal) states are often more impactful than more moderate
states. However, another person’s rage, although highly arousing
for them, may hold import for us only to the extent that it is di-
rected outward at other people (i.e., social) rather than inward.
Similarly, another’s envy, although highly social, may hold import
for us only in proportion to its intensity. Thus, whereas others’
mental states might affect the self for many reasons, highly intense
and social states may be most likely to do so.
The third dimension to emerge from this study, “valence,” cap-

tures the difference between positive and negative mental states.
This concept has long been implicated in social and affective pro-
cessing (5). As such, it may come as no surprise that valence plays
an important role in the organization of mental state representa-
tions. Of note, however, is that we find a unique spatial distribution
associated with this dimension. Previous work has associated the
processing of positive vs. negative stimuli with specific neural net-
works, including the mesolimbic dopamine system (23), as well as
other limbic structures, such as the amygdala (24). Supplementary
univariate analyses do show that the VMPFC, a region involved in
reward and value more generally, tracks the positivity of mental
states (Fig. S4). However, our MVPA results did not identify these
regions but instead implicated left-lateralized cortical regions in the
lateral prefrontal cortex and the angular gyrus. One possible ex-
planation is that language supports the processing of mental state
valence, but not other types of valence, a hypothesis here only
preliminarily supported by the lateralization and the proximity of
the valence regions to known language areas.
Together, the three significant dimensions described above explain

nearly half of the reliable variance in the neural representation of
mental states. While much remains unexplained (Fig. S5), this result
appears quite promising. The social impact dimension alone predicts
more variance than any of the original theoretical models; the com-
bination of the three significant PCA-derived dimensions explains
approximately twice the variance of the circumplex model, the most
successful of the original theories. At the same time, given their
significance to psychological theory, it is both reassuring and un-
surprising that five of the seven original theories significantly predict
neural pattern similarity. Notably, even theories that were originally
geared toward explaining traits or groups, such as the stereotype
content model, demonstrate their efficacy in the mental state domain.

Fig. 4. Searchlight results indicating the
spatial distribution of mental state repre-
sentations consistent with (A) the circumplex
model of affect, (B) the stereotype content
model, (C) the agency and experience model
of mind perception, (D) emotion and reason,
(E) mind and body, (F) social and nonsocial,
and (G) shared with other animals and
uniquely human. The similarity of patterns
within the yellow/orange regions can be
explained by their proximity to each other
on the dimensions of the corresponding so-
cial cognitive models (P < 0.05 corrected).
Searchlight analyses were conducted on
each participant and combined through
one-sample random-effects t tests.
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This finding raises the interesting possibility that the same dimensions
organize neural activity about different types of social constructs.
In addition to informing us about the psychological question of

interest—the organization of mental states—the current results
also hint at the neural encoding scheme within the social brain
network. By assessing the representation of mental states at two
different levels of spatial organization—local activity patterns
within spherical searchlights and broader activity patterns across
the social brain network—the current study is well placed to bear
on this issue. The results of the present study support the hy-
pothesis that information is encoded by patterns of activity
within localized brain regions, rather than across different re-
gions. If local patterns did not encode social information but
coarse patterns across the network did, the searchlight analysis
would fail to produce results. Instead, we observe reliable
encoding of mental state information in local patterns across the
social brain, and explanatory power at the network level appears
roughly in proportion to the cortical extent of their local
encoding. As such, the current results provide no evidence that
others’ mental states are represented by interregional activity
differences above and beyond the information already contained
in local patterns. Interestingly, we find that two regions, the
dMPFC and TPJ, each underlie multiple dimensions. Previous
work has already heavily implicated these regions in mentalizing.
The convergence of multiple dimensions on these nodes may
help to explain their prominence in this domain.
Here, we have identified three dimensions that organize our

representations of others’ mental states. However, participants in
this study thought about only the mental states of a nonspecific
other. Do these same dimensions apply across different categories
of “other”? For example, our understanding of a friend’s happi-
ness likely differs considerably from our concept of a stranger’s
happiness; our understanding of our own happiness likely differs
considerably from others’ happiness. Future work should en-
deavor to understand whether the dimensions we discovered here
expand or contract in their importance on the basis of the person
under consideration. We might expect such changes to be asym-
metric across dimensions depending on one’s relationship with the
person experiencing the mental state. For instance, when consid-
ering a close friend’s mental state, we might become more sensi-
tive to valence differences but less sensitive to social impact
(because all of the friend’s states are more impactful).
We can also ask how these dimensions might apply across social

cognition more generally. The current study used only lexical
stimuli and tested these dimensions on only English-speaking
adults. Do these dimensions apply to social cognition in other
cultures? Do infants or other primates demonstrate any of the
building blocks of these dimensions? Do these same dimensions
apply when mentalizing about nonlinguistic content? Previous
work on cross-modal emotion representation indeed suggests that
visual and verbal emotional stimuli may be processed similarly (25,
26) although the full model has yet to be tested. We hope that the
current data will provide a solid foundation for future research in
these domains. It is also worth considering precisely which pro-
cesses the imaging task taps. The task relies heavily on conceptual
representations of mental states, and it is not entirely clear how
strongly these concepts might guide other forms of mentalizing.
Finally, we should endeavor to ask why the social brain would

organize its activity in accordance with the three dimensions
discussed above and not others. The dimensions that shape
mental state representations likely contribute to helping us solve
problems in the social world. For example, we speculate that the
three dimensions identified here might inform calculations re-
garding the threat posed by others: Valence could indicate the
probability of help or harm; social impact would help estimate
the likely magnitude of that that help or harm; and rationality
would indicate the likely method of its expression (e.g., harm
through a devious plot vs. an explosion of rage).
The present study derived four potential dimensions of mental

state representation—rationality, social impact, human mind, and
valence—from the existing psychological literature. We discovered

that three of these dimensions—rationality, social impact, and
valence—predicted patterns of neural activity elicited across the
social brain network by consideration of others’ mental states. By
discovering which dimensions the brain spontaneously uses to
organize the domain of mental states, we have forged a deeper
understanding of both human social cognition and its relationship
to our own internal mental experience. These findings both inform
long-standing debates within social psychology about theory of
mind and can be used to generate novel predictions about how the
brain supports our ability to mentalize.

Materials and Methods
Participants. Participants (N = 20) were recruited via the Harvard University Study
Pool (16 female; mean age, 22.7 y; range, 18–27 y). A Monte Carlo simulation was
used to determine participant and trial numbers consistent with adequate sta-
tistical power (SI Text). All participants were right-handed native speakers of
English, reported no history of neurological problems, and had normal or cor-
rected-to-normal vision. Participants provided informed consent in a manner
approved by the Committee on the Use of Human Subjects at Harvard University.

Experimental Design. Participants underwent functional neuroimaging while
considering another person experiencing a variety of mental states. The task
elicited patterns of neural activity that reflect the representation of each
state. On each trial, participants considered 1 of 60 mental states (Table S1).
At the onset of the trial, one mental state term was presented for 1 s. This
word remained on screen while two very brief scenarios associated with that
mental state appeared for 3.75 s, one on the lower left side of the screen
and one on the lower right side. Participants were instructed to report which
of the two scenarios they thought would better evoke the mental state in
another person. Participants indicated their response using a button box in
their left hand by pressing either the middle finger for the left scenario or
their index finger for the right scenario. There were no correct answers
because both scenarios were pretested to elicit the scenario in question.
Each trial was followed by a minimum 250-ms fixation and a randomized
jittered fixation period (mean 1.67 s, range 0–10 s, in 2.5-s increments).
During scanning, participants saw each of the 60 mental states on 16 occa-
sions. Each state was presented once per run over the course of 16 consec-
utive runs of 405 s each. Participants judged a unique pair of scenarios on
each trial; each of 16 scenarios was used only twice over the course of the
experiment. Stimuli were presented with PsychoPy (27).

The 60 mental states in this study were selected to maximize observable
differences based on survey ratings from a separate set of participants (n =
1,205) (SI Text). Many of the theories under consideration made similar pre-
dictions about mental state representations. We pared down the information
contained in the extant models using PCA. The PCA was conducted with re-
spect to the 16 rating dimensions described above and the 60 mental states
selected for the experiment. Varimax rotation was used to maximize the in-
terpretability of the factors while maintaining their orthogonality (oblique
rotation indicated that the orthogonal solution was satisfactory) (SI Text).
Parallel analysis (28) and very simple structure (29) criteria were used to de-
termine component number, with both indicating four factor solutions. The
scenarios presented to subjects in this study were all written to be concise
(fewer than five words), believable, devoid of personal pronouns, in the pre-
sent tense, and maximally associated with their respective mental state. We
selected an optimal set of scenarios using a genetic algorithm on survey rat-
ings from a separate set of participants (n = 795) (SI Text).

Functional Imaging Procedure. Functional data were acquired using a gradi-
ent-echo echo-planar pulse sequence with parallel imaging and prospective
motion correction [repetition time, 2,500 ms; echo time (TE), 30 ms; flip angle,
90°) on a 3T Siemens Trio with standard 32-channel headcoil. Images were
acquired using 43 axial, interleaved slices with a thickness of 2.5 mm and 2.51 ×
2.51-mm in-plane resolution (field of view, 216 mm2; matrix size, 86 × 86
voxels; 162 measurements per run). Functional images were preprocessed and
analyzed with SPM8 (Wellcome Department of Cognitive Neurology), using
SPM8w. Data were first spatially realigned to correct for head movement and
then normalized to a standard anatomical space (2-mm isotropic voxels) based
on the ICBM 152 brain template (Montreal Neurological Institute).

A general linear model (GLM) was used to generate participant-specific
patterns of activity for each mental state. The model included one regressor
for each of the mental states, for a total of 60 regressors of interest. Events
were modeled using a canonical hemodynamic response function and
covariates of no interest (temporal and dispersion derivatives, session mean,
run mean, linear trends, outlier time points, and six motion realignment
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parameters). Boxcar regressors for events began at the onset of the pre-
sentation of the mental state. GLM analyses resulted in 60 t-value maps, one
for each mental state, for each participant. In essence, these maps embody
the average neural representation of each state.

We compared neural representations at each voxel in the brain using a
searchlight procedure (30). Patterns of activity for each of the 60 mental
states were extracted from participant’s GLM-derived t-value maps using a
spherical searchlight with 4-voxel radius (∼9 mm). To compare the similarity
of activity patterns for different mental states, we computed the Pearson
correlation between each pair of patterns. Thus, two mental states that
elicited highly correlated patterns of activity across the searchlight were
considered to be more similar to each other. This searchlight procedure
resulted in neural similarity matrices at each point in the brain: 60 × 60
matrices whose elements correspond to the correlations between the pat-
terns of neural activity within that searchlight.

We used these estimates of neural similarity to test whether mental states
were represented in amanner predicted by the four PCA-derived dimensions.
To do so, we made similarity predictions for each dimension with respect to
each pair of mental states by taking the absolute difference in their scores on
the dimension in question. Multiple regression was used to determine how
well the predictions of the PCA-derived dimensions accounted for neural
similarity. These regressions generated four maps of unstandardized re-
gression coefficients for each participant, one for each component. The
participant-specific maps were smoothed (Gaussian 6-mm FWHM kernel) and
entered into random effects analysis using one-sample t tests. The four
resulting t-value maps indicate regions of the brain in which differences in
the neural patterns elicited by mental states correspond to the differences
between mental states along each component. Results were corrected for
multiple comparisons via a Monte Carlo simulation using the AFNI (31)
3dClustSim script (estimates of actual smoothness obtained from the four
PCA maps and averaged; whole brain mask from the contrasts constrained
voxel number). This simulation indicated that, with an uncorrected threshold
P < 0.001, a 76-voxel extent was sufficient to yield a corrected threshold of
P < 0.05. For visualization, statistical maps were rendered on the cortical
surface using Connectome Workbench (32).

To test whether relevant patterns of activity were represented in a more
distributed manner, we conducted an additional network-wide similarity
analysis. In this analysis, we generated a single neural similarity matrix per

participant based on the pattern of activity across an independently defined
network of neural regions. This network was defined using a whole brain
omnibus repeated-measures ANOVA across the 60 mental states and 20
participants, which selected any voxels that showed different levels of activity
across mental states (Fig. 3A). Due to the sensitivity of this analysis, voxels
were selected at a conservative voxelwise threshold of P < 0.0001. The
univariate nature of this approach appeared adequate as similar regions
emerge from split-half searchlight reliability (Fig. S6). Note that, whereas
this feature selection relied on the same data subjected to MPVA, it was
independent of any of the dimensions being tested and thus did not yield
biased results. Indeed, the network analysis based on these voxels produced
results nearly indistinguishable from the same analysis conducted using
voxels selected via a metaanalysis of mentalizing studies (SI Text).

As with the searchlight analysis, in the network analysis, patterns of neural
activity were extracted from the entirety of the feature selected area for each
of the 60 mental states. These patterns were correlated to produce a single
neural similarity matrix for each participant. These matrices were then av-
eraged to produce a single group-level matrix. The group neural similarity
matrix was Pearson-correlated with the similarity matrices generated from
each of the four latent dimensions. To generate confidence intervals for these
correlations, this procedure was repeated 10,000 times with group similarity
matrices based on bootstrapped samples of the 20 participants.

We conducted analogous searchlight and network similarity analyses to
test the seven theoretical models. The similarity between pairs of mental
states was calculated as the (opposite of the) distance between the two
mental states in the Euclidean space determined by the dimensions of each
theory. This analysis diverged from that used for the PCA-based models only
in that each theoretical model’s predictions were independently correlated
with neural similarity. This divergence was due to the substantial collinearity
between the models, which was absent from the PCA-based models.
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Power Analysis
A Monte-Carlo simulation in MATLAB 7 was conducted to
establish a design with adequate statistical power. We simulated a
behavioral similarity matrix and a neural similarity matrix that
were correlated at the estimated population effect size of r = 0.15.
This effect size was thought to be reasonable based on previous
work (e.g., ref. 13). To generate the behavioral similarity matrix,
we simulated activity in a single searchlight. That searchlight
consisted of 200 voxels and 60 separate patterns of activity, to
represent each of the mental states. The simulated “activity”
within the voxels should be normally distributed (M = 0, SD = 1)
as an approximation for the t-values used in the actual analysis.
The 60 × 60 correlation matrix produced by this searchlight was
considered the behavioral model. We created patterns of neural
activity within the simulated searchlight by taking the 200 voxel-
by-60 state matrix used to generate the behavioral model and
adding additional random noise: ∼N(0, 2.4). When these neural
patterns were correlated with one another, the resulting neural
similarity matrix consistently correlated with the corresponding
behavioral matrix at approximately r = 0.15. Because this neural
pattern matrix reflects experiment-level data, we added addi-
tional noise ∼N(0, 10) to represent data from individual trials.
On each iteration of the simulation, a particular participant

number and trial (per mental state) were set. Trial-wise neural
patterns of searchlight activity were generated for each partici-
pant and averaged to produce a single pattern for each partici-
pant. These patterns were then converted to similarity matrices
and correlated with the overall behavioral similarity matrix. The
resulting r values were R-to-z transformed and entered into a t
test across simulated participants. The result of this t test was
tabulated to estimate power. Participant numbers between 2 and
30 and item numbers between 2 and 20 were simulated, with 100
simulation iterations at each combination of these parameters.
These simulations indicated that 20 participants with 16 trials
per mental state should be adequate to ensure 95% voxelwise
statistical power at an uncorrected threshold of P < 0.001.

Mental State Selection
The 60 mental states in this study were selected to maximize
observable differences and thus statistical power. To accomplish
this outcome, a set of participants assessed how representative
each of 166 mental states was of each of 16 univariate dimensions.
Participants (n = 1,205) were recruited through Amazon Me-
chanical Turk and the Harvard University Study Pool to com-
plete one or more of eight online surveys: emotion/reason (n =
145), mind/body (n = 140), agency/experience (n = 145), warmth/
competence (n = 157), high/low arousal (n = 151), social/nonsocial
(n = 137), positive/negative (n = 168), and shared/uniquely human
(n = 153). In each survey, participants were provided with def-
initions of the two dimensions of interest and then were asked on
each trial whether a particular mental state could be catego-
rized along one, both, or neither of the two dimensions of in-
terest in that survey. Across all participants, we could thus
assess the proportion of trials in which each mental state was (or
was not) associated with each dimension. This aggregation re-
sulted in continuous ratings between 0 and 1 for each of the 166
mental states on each of 16 psychological dimensions. We used
data from the ratings of the 166 mental states along the
16 nominal dimensions to select the optimal set of states. To do
so, we ran the resulting 166 × 16 matrix of data through an
optimization selection process, which iteratively selected a random

subset of mental states (separately for subsets between 50 and 98),
calculated how well they sampled each dimension using a
Kolmogorov–Smirnov test (compared with a uniform distribution),
calculated the redundancy of each dimension using Tolerance, and
then, over 10,000,000 iterations, selected the solution that max-
imized the former and minimized the latter. The optimal solu-
tion of 60 mental states was used in the current study.

Analysis on Excluded Mental States
To ensure that the mental state selection process did not bias the
factors derived from principal component analysis, an identical
analysis was carried out with respect to the 106 mental states not
included in the imaging experiment. Very simple structure in-
dicated a four-factor solution to this analysis for the 106 mental
states not included in this study as well. Factor order was not
identical across the two solutions, but, when rearranged, including
reflection where necessary, the factor loadings were reproduced
with the following respective reliabilities (rs): 0.97, 0.96, 0.84, 0.95.
The reliability of the solutions not only suggests that the 60-state
model did not produce a biased factor structure, but also provides
additional evidence for the importance of the identified factors.
The full set of mental states was also used to determine whether

an orthogonal PCA rotation was appropriate. The 16 psycho-
logical dimensions were subjected to PCA across all 166 rated
mental states, with four components retained. These components
were then allowed to correlate with each other via an oblique
direct oblimin rotation. The resulting factor correlation matrix
indicated little tendency for the components to correlate. The
highest correlation was between social impact and valence (r =
0.27), and the mean (absolute value) of the intercomponent
correlations was r = 0.12. This result suggests that the orthogonal
varimax rotation and its concomitant interpretational simplicity
may be retained without substantially distorting the relationship
between components.

Scenario Selection Algorithm
The scenarios presented to participants in this study were all
written to be concise (fewer than five words), believable (e.g.,
“finding $5 on the sidewalk” rather than “winning the lottery”),
devoid of personal pronouns, in the present tense, and maximally
associated with their respective mental state. To select an opti-
mal set of scenarios, a separate set of participants (n = 795) were
recruited through Amazon Mechanical Turk and the Harvard
University Study Pool to complete an online survey that assessed
how well each mental state was associated with each scenario.
On each trial, participants saw one of the 60 mental states se-
lected using the procedure described above and one of 36 sce-
narios specific to that mental state. Their task was to rate the
degree to which the mental state was associated with the sce-
nario on a scale from 1 (mildly) to 5 (highly). Each participant
was presented with 180 such items.
The sets of 16 scenarios for each mental state used in this study

were selected (out of a larger set of 36 for each state) by a custom
genetic algorithm using participant ratings. Genetic algorithms
are optimization programs intended to achieve a desired result by
mimicking the mechanisms of organic evolution by natural se-
lection. The algorithm was initiated by randomly generating 100
“strains,” with strain defined as any set of 16 scenarios for each
mental state. On each of 10,000 iterations, the “fitness” of each
strain was evaluated (as described below), and strains were se-
lected for reproduction proportional to their fitness raised to the
power of 100 (to increase selection pressure) through stochastic
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universal sampling. Imitating sexual reproduction, two-parent
two-child crossover of scenarios within mental state was used to
generate a new generation of strains. In this process, each sce-
nario in a “child” strain had an equal probability of being drawn
from either of the two “parent” strains. During reproduction,
each scenario also had 0.001 probability of “mutating” to a dif-
ferent scenario within the same mental state (even if that sce-
nario appeared in neither of the parent strains). Additionally,
the best strain from each generation persisted unchanged to
avoid discarding a potential optimum solution.
The “fitness” in this algorithm was determined by four equally

weight parts: (i) The scenarios should maximally evoke the
mental state of interest—to ensure the appropriateness of each
scenario to the mental state in question; (ii) they should mini-
mize variability in how well different mental states are evoked—
to make sure we were not left with many good examples of one
state and bad examples of another; (iii) they should minimize
variability in how variably scenarios evoke mental states across
scenarios—to ensure that choices were not easier for one state
(with high variability between scenarios) than another (with
lower variability); and (iv) they should minimize average char-
acter length variability across mental states—to ensure that low
level features such as size on retina did not differ across states.
The strain with the best fitness at the end of the simulation
dictated the scenarios ultimately used in the experiment.

Text Analysis of Scenarios
To control the scenarios more closely, an automated text analysis
was performed to assess several midlevel linguistic properties. In
particular, we aimed to control for the concreteness, complexity,
and familiarity of the scenarios associated with each mental state.
Concreteness and complexity norms were taken from large rating
sets (33, 34), with the latter measured using age of acquisition as a
proxy. Familiarity was based on the SUBTLEXus word frequency
measure. For a given scenario, each word’s concreteness, com-
plexity, and familiarity values were determined and then aver-
aged to produce a single measure. These measures were then
averaged across scenarios to provide a single score along each
linguistic dimension for each of the 60 mental states.
The network-level representational similarity analysis was re-

peated after partialing out the influence of the linguistic variables
on neural pattern similarity. In other words, each linguistic var-
iable was converted to a set of similarity predictions by taking
absolute differences, and neural pattern similarity was then
regressed onto these predictions. The residuals of this regression
were then correlated with the four dimensions derived from
psychological theories. These correlations remained very similar
to the values obtained before removing the influence of the
linguistic variables: rationality (r = 0.15), social impact (r = 0.21),
human mind (r = 0.05), and valence (r = 0.12). Moreover, the
statistical significance (or lack thereof) at P < 0.05 of the PCA-
derived dimensions remained unchanged. This result suggests
that the influence of these linguistic features cannot account for
the predictive power of the psychological dimensions.

ICA Network Representational Similarity Analysis
To further assess the robustness of the results to varying analytic
techniques, we repeated the feature-selected network represen-
tational similarity analysis using dimensions extracted from the
behavioral ratings via independent component analysis (ICA) in-
stead of PCA. The four components that emerged from the ICA
analysis of the 60 mental states closely resembled those extracted
via PCA in terms of simple structure. Adjusting for changes in
order, and ignoring arbitrary sign reflections, ICA and PCA
components expressed the following correlations for rationality,
social impact, human mind, and valence, respectively: rs = 0.86,
0.95, 0.94, and 0.89. The ICA components were converted to
similarity predictions and correlated with neural pattern similarity

from the ANOVA-selected social brain network. Unsurprisingly,
given the high correlations with the PCA components, similar
correlations with the neural data obtained: rationality (r = 0.10),
social impact (r = 0.23), human mind (r = 0.03), and valence (r =
0.18). The statistical significance of these values—as determined
through bootstrapping participants—did not differ qualitatively
from that reported for the PCA dimensions.

Spearman Correlation Network Analysis
Again, to assess the robustness of the results reported in the main
text, we repeated the representational similarity analyses on the
feature-selected network, this time using Spearman rank correlation
instead of Pearson correlation to associate the behavioral and
neural data. Spearman correlations have the advantages of being
more robust to outliers than Pearson correlations, and also of being
able to detect any (monotonic) nonlinear relationships that might
exist. The analysis, including bootstrapping, otherwise proceeded
exactly as in the original Pearson case. Results were nearly in-
distinguishable from those in the Pearson correlation analysis: ra-
tionality (r = 0.13), social impact (r = 0.22), human mind (r = 0.04),
and valence (r = 0.12). For the original theories, correlations also
remained quite stable: valence and arousal (r = 0.19), warmth and
competence (r = 0.16), agency and experience (r = 0.19), emotion
and reason (r = 0.17), mind and body (r = 0.18), social and non-
social (r = 0.04), and shared and unique (r = 0.03). The statistical
significance of the results remained unchanged. This outcome
suggests that neither outliers nor nonlinearity is likely to have
contributed substantially to the results we present.

Interdimensional Interaction Network Analysis
The primary network analysis we present features only the main
effects of the four PCA-derived dimensions. It is quite possible
that these dimensions interact with each other in terms of their
influence on neural pattern similarity. Such an interaction would
effectively indicate that the importance of one dimension for
distinguishing mental states changes depending on how different
those states were along another dimension. To test for this
possibility here, we repeated the ANOVA-selected network
representational similarity analysis, including interaction effects.
Although the possibility exists for highly complex interactions
between the four dimensions, we considered only two-way in-
teractions for the sake of interpretability and limiting multiple
comparisons.
As before, the four dimensions were converted to similarity

predictions by taking the absolute distance between points. These
distances were then z-scored and multiplied to produce the six
possible two-way interaction terms. The main effects and in-
teraction terms were simultaneously entered into a multiple re-
gression predicting neural similarity. The resulting coefficients
were bootstrapped across participants—as in the original cor-
relation analyses—to determine their statistical significance. The
main effects of rationality, social impact, and valence remained
statistically significant whereas the main effect of human mind
remained nonsignificant. In addition, three interaction terms
emerged as significant at the P < 0.05 level: rationality × human
mind [b = −0.003, 95% bootstrap CI (−0.004, −0.002)], social
impact × human mind [b = −0.002, 95% bootstrap CI (−0.004,
−0.001)], and social impact × valence [b = 0.001, 95% bootstrap
CI (0.0005, 0.002)].
Interestingly, two of these results involve the human mind

despite the fact that this variable has no main effect on neural
pattern similarity. This result may help clarify the role of this
dimension with respect to mental state representation. Rather
than distinguishing between mental states, the human mind may
primarily play a modulatory role, moderating the importance of
other dimensions on mental state representation. In both cases,
these interactions were negative; thus, they can be interpreted as
follows: The more mental states differ in terms of their human
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mind, the fewer differences in rationality and social impact
predict neural pattern differentiation. The third interaction term
runs in the opposite direction: The greater the difference in social
impact between twomental states, themore differences in valence
can predict pattern differences.

Network Analysis with Alternative Feature Selection
The feature selection approach we used to isolate the social brain
network was based on a univariate ANOVA over the same data
analyzed in the subsequent representational similarity analysis.
This ANOVA is agnostic to the theories we are testing and not
statistically biased to produce a spurious correlation between
neural similarity and the behavioral ratings. It is in essence similar
to choosing voxels based on their univariate reliability. A biased,
circular analysis selects voxels based on their correlation with the
external measure with which they will ultimately be correlated;
here, our approach selected voxels based on their correlation with
themselves (i.e., their reliability) producing an orthogonal contrast.
Nonetheless, we consider it worthwhile to repeat the network

analysis using a completely independent feature selection method.
In this case, we turned to Neurosynth (neurosynth.org/), an online
tool for performing automated metaanalyses over large numbers of
imaging studies. Using the “theory mind” reverse inference map,
Neurosynth produced a metaanalysis of 140 studies involving the-
ory of mind. We used this map [at the default false discovery rate
(FDR) q = 0.01] to produce a feature selection mask. This ap-
proach has the virtues of being both completely statistically in-
dependent of our current data, and also coming about as close as
possible to producing a set of canonical voxels involved in thinking
about other minds. From this point on, the representational simi-
larity analysis proceeded as previously described in Functional
Imaging Procedure in the main text. The correlations between the
PCA-derived dimensions and neural similarity within the network
selected by metaanalysis remained similar to the values previously
observed, with no changes in statistical significance at the P < 0.05
level: rationality [r = 0.19; 95% bootstrap CI (0.08, 0.22)], social
impact [r = 0.20; 95% bootstrap CI (0.10, 0.24)], human mind [r =
0.02; 95% bootstrap CI (−0.03, 0.08)], and valence [r = 0.10; 95%
bootstrap CI (0.02, 0.15)]. The fact that these values have not
uniformly decreased serves as further evidence for the unbiased
nature of the ANOVA feature selection technique. Results from
the seven original theories also remained qualitatively unchanged:
valence and arousal [r = 0.16; 95% bootstrap CI (0.8, 0.21)],
warmth and competence [r = 0.17; 95% bootstrap CI (0.07, 0.21)],
agency and experience [r = 0.23; 95% bootstrap CI (0.12, 0.25)],
emotion and reason [r = 0.21; 95% bootstrap CI (0.10, 0.24)], mind
and body [r = 0.16; 95% bootstrap CI (0.08, 0.20)], social and
nonsocial [r = 0.04; 95% bootstrap CI (−0.03, 0.10)], and shared
and unique [r = 0.02; 95% bootstrap CI (−0.02, 0.05)].

Multidimensional Scaling
Nonmetric multidimensional scaling (MDS) was used to estimate
the proportion of variance in representational space of mental
states that could be explained by the three significant PCA-de-
rived dimensions from the representational similarity analysis.
We took this approach to better assess the proportion of variance
our model explains in the true dimensions underlying mental
state representation. The raw R2 between the similarity predic-
tions of the PCA-derived dimensions and neural similarity esti-
mates would systematically underestimate this quantity by a
quadratic factor, leading us to use this MDS approach. A 5D
scaling yielded an acceptable stress (0.13) below the conven-
tional threshold of 0.15. Unfortunately, due to the arbitrary
orientation of MDS solutions and the high dimensionality of this
particular solution, it is beyond the scope of this article to ex-
plore the nature of the unidentified dimensions. However, we do
present the results of a 2D scaling solution to allow the reader to
explore the neural similarity more directly (Fig. S2). The relative

importance of the five dimensions was assessed by regressing the
original dissimilarity matrix onto similarity predictions made
by the five MDS dimensions and partitioning the resulting R2.
These estimates were normalized by the total R2 of the re-
gression and later used as weights. The 5D scaling dimensions
were then individually regressed onto the three significant PCA-
based dimensions from the network analysis. The resulting R2

values were summed into a final estimate of total R2, with
weights based upon the relative importance of each dimension to
overall neural similarity as calculated via regression of the MDS
dimensions onto the original neural dissimlarity matrix.

Model Selection by Cross-Validated Performance
The principal aim of this study has been to establish which
psychological dimensions contribute to shaping the neural rep-
resentation of mental states. To that aim, we have used the
standard null hypothesis significance testing framework to assessing
the contribution of each of our four PCA-derived dimensions
in turn. However, it is also worth considering a model selection
technique that holistically assesses the representational spaces
dictated by different possible combinations of our hypothetical
dimensions. Moreover, such a technique need not necessarily rely
on the concept of statistical significance to determine which
dimensions ought to be included in the optimal model. Instead, it
might rely on cross-validated prediction performance as a measure
of support for different potential models.
To this end, we conducted an alternative to the network rep-

resentational similarity analysis described in the main text. This
technique proceeded as follows. First, a set of dimensions consisting
of between one and four of the PCA-derived dimensions was se-
lected. This step was repeated exhaustively to ultimately include all
possible unique combinations of principal components (PCs) (15 in
total). Next, the regression coefficients were simultaneously esti-
mated for all of the selected dimensions with respect to the neural
data using nonnegative linear least squares. Squared similarity
values were used for both behavioral and neural data to allow for
later comparison with models containing nonorthogonal dimen-
sions (distances in Euclidean spaces do not sum unless dimensions
are orthogonal, but their squares do, regardless). The regression
coefficients estimated using this approach with the 19 “training”
participants were used to weight the squared behavioral similarity
values from each dimension. These values were then summed to
form a single predictor for the neural similarity space. This pre-
dictor was then correlated with the squared neural similarity values
of the left-out participant to produce a measure of predictive
performance. This process was repeated leaving out each partici-
pant in turn, and the 20 correlations for each combination of PCs
were averaged to produce an overall measure of model perfor-
mance for that combination. The cross-validated performance of
all possible PC combinations could then be directly compared.
Consistent with the findings from the earlier representational
similarity analyses, the highest performing model consisted of the
three dimensions of rationality, social impact, and valence. This
model achieved a cross-validated r = 0.12 (note that this value is
considerably lower than those previously reported because it cor-
responds to the prediction of an individual participant rather than
the group average).
This cross-validation approach also provided an alternative

approach to comparing the PCA-based model with the original
theoretical models. This approachmight favor the original models
more than the representational similarity analysis reported earlier
because it allows the weights of their dimensions to differ rather
than effectively fixing them to equality. The original theoretical
models achieved the following performance: valence and arousal
(r = 0.07), warmth and competence (r = 0.06), agency and ex-
perience (r = 0.07), emotion and reason (r = 0.07), mind and
body (r = 0.06), social and nonsocial (r = 0.02), and shared and
unique (r = 0.01). Although again the values are smaller due to
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the fact that they apply to single participants, the overall pattern
of results remains qualitatively quite similar, with most of the
original models performing in the r = 0.06–0.07 range and while
sociality and human uniqueness perform close to r = 0. Un-
surprisingly, the best PCA-derived model also retained its sub-
stantial lead over the original theories in explaining neural
pattern similarity (Fig. S3).
A noise ceiling for cross-validated model performance was

obtained by iteratively correlating the neural similarity matrix of
each participant with the average neural similarity matrix of the
other 19. The result was a ceiling of r = 0.28. This ceiling is an
indication of the expected single-participant predictive perfor-
mance of a “perfect” or “complete” model of mental state rep-
resentation, as approximated by the group average similarity
matrix. Consistent with the R2 results reported in the main text,
comparison of the noise ceiling with the performance of the best
“3 PC” model indicates that the dimensions of rationality, social
impact, and valence explain slightly less than half of the neural
representation of others mental states. Although we consider this
result surprisingly high given the early state of this research, this
result also highlights the need to uncover the dimensions that can
explain the remaining variance in mental state representation.

Split-Half Searchlight Reliability Mapping
We performed a whole brain mapping of the split-half reliability
of searchlight similarity matrices. The value of this analysis is
twofold. First, it illustrates which regions contain patterns with
reliable structure with respect to mental states, agnostic to any
particular theory regarding their representation. Second, it allows
us to determine whether differing effects across the cortical
surface might be attributed to differences in correlation atten-
uation. For instance, the proportion of variance explained by a
particular psychological dimension, such as valence, might be the
same across two regions with differing correlation between va-
lence and neural similarity if the reliability of the neural similarity
differs between the regions. A less reliable region would produce
greater correlation attenuation, reducing the apparent effect size
of valence whereas a more reliable region would be relatively
disattenuated, and therefore manifest a larger effect, all else
equal. Thus, the ultimate correlation between neural and be-
havioral similarity in a particular region might be viewed as the
result of two different qualities: pattern similarity reliability,
which reflects the degree to which a region represents mental
state at all, and the disattenuated brain–behavior correlation,
which indicates how well any mental state representation is
modeled by the behavioral ratings in question.
To perform the whole brain reliability mapping, representa-

tional similarity matrices were calculated for each searchlight in
the brain of each participant. The participants were then ran-
domly divided into two groups of 10, and the similarity matrices
from corresponding voxels were averaged within each half.
The averaged similarity matrices were then correlated across the

halves to produce split-half reliability values at each point in the
brain. The resulting values were visualized on the cortical surface
using Connectome Workbench (Fig. S6). The results from this
mapping were highly consistent with those from the univariate
feature selection ANOVA, as might be expected. In general,
regions associated with social cognition, such as medial pre-
frontal and parietal cortices, the TPJ, and the ATL, demon-
strated high representational reliability whereas other regions,
such as visual and somatosensory cortices, did not.

Parallel Univariate Whole Brain Mapping
To supplement the MVPA, we also carried out whole brain
univariate analyses with respect to the four PCA-derived di-
mensions. To maximize the parallelism between these analyses
and the MVPA, we used the same contrast maps produced by the
MVPA GLM (i.e., one pattern of betas for each of the 60 mental
states for each participant). These maps were smoothed with a
6-mm FWHM Gaussian kernel and then entered into a multiple
regression analysis. At each voxel, activity levels from the 60
mental states were regressed onto the scores of the four PCA-
derived dimensions. Whole brain regression maps were combined
across participants via voxelwise t tests. The same voxelwise and
cluster correction thresholds were retained for consistency with
the multivariate results.
The results were visualized on the cortical surface using

Connectome Workbench (Fig. S4). The spatial distribution of
univariate activity was largely similar to that of the searchlight
information mapping, albeit generally less extensive. One de-
viation is worthy of particular consideration, however, because it
may reconcile an apparent discrepancy between our findings and
other results. Although the MVPA results indicate no relation-
ship between VMPFC patterns and valence, we do observe a
univariate correlation, such as more positive mental states elicit
greater activity in this region. The latter finding is consistent with
other work on mental state representation and VMPFC’s role in
reward and value more generally.

Analysis of Residuals
To determine where the PCA-based representational similarity
analysis was failing to account for differences between mental
states, we constructed a representational dissimilarity matrix of
the residuals from a multiple regression featuring the three sig-
nificant dimensions (Fig. S4). Additionally, we calculated the
average residual for each mental state and correlated these av-
eraged residuals with three significant PCs. The rationality of a
mental state did not predict whether its pattern was chronically
predicted to be more or less different from that of other states
(r = −0.03). The pattern dissimilarity between negative states
tended to be slightly overestimated (r = 0.18). Finally, pattern
dissimilarity between highly socially impactful states tended to be
substantially underestimated (r = −0.66).
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Fig. S1. Correlations between theoretical dimensions. Pearson product-moment correlations between participant ratings of 60 mental states on 16 potential
dimensions of mental state representation derived from the existing psychological literature (n = 1,205).
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Fig. S2. Multidimensional scaling of network-level neural similarity. Proximity between points indicates greater neural pattern similarity within the social
brain network. The same 2D scaling is presented in A–D, overlaid with each of the four hypothetical dimensions of mental state representation. The 2D scaling
is insufficient to fully capture the differences between patterns elicited for each mental state, but associations between neural space and psychological di-
mension are still visible.
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Fig. S3. Cross-validated model performance. Bars indicate performance of a representation similarity analysis based on nonnegative least-squares regression.
Weights for dimensions within each theory were trained on data from 19 participants. This regression model was then tested by predicting the neural pattern
similarity of the left-out participant. Each participant was left out iteratively, and results were averaged across all 20 training-testing combinations. Points in
the “PC combinations” column indicate the performance of every possible combination of 1–4 of the 4 PCs. The farthest left bar indicates the performance of
the best model, consisting of the PCs rationality, social impact, and valence. The noise ceiling indicates the expected performance of an ideal model for mental
state representation.
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Fig. S4. Univariate effects of PCA-derived dimensions. Significant associations between each of the four PCA-derived dimensions and voxelwise univariate brain
activity. Orange voxels indicate activity associated with greater emotionality (and less rationality) of mental states (A), greater social impact (B), or greater
negativity (D). Blue voxels indicate activity associated with more shared/bodily states (C), or more positive states (D). Statistical maps resulted from random effects
one-sample t tests across participants and were corrected for multiple comparisons (P < 0.05) via Monte Carlo simulation (voxelwise P < .001, k > 75).
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Fig. S5. Residual representational dissimilarity matrix. High positive residuals (red) indicate that mental states were more dissimilar than three significant
PCA-derived dimensions would predict. High negative residuals (blue) indicate pairs of mental states that were less different than the PCA-derived dimensions
would predict.
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Fig. S6. Reliability of similarity searchlights. The reliability of the neural representations of other’s mental states throughout the brain, calculated as the split-
half correlation between pattern similarity estimates. Many regions typically implicated in theory of mind demonstrate relatively high reliability.

Table S1. The 60 mental states used in the imaging experiment

Affection Disgust Intrigue Relaxation
Agitation Distrust Judgment Satisfaction
Alarm Dominance Laziness Self-consciousness

Anticipation Drunkenness Lethargy Self-pity
Attention Contemplation Lust Seriousness
Awareness Earnestness Nervousness Skepticism

Awe Ecstasy Objectivity Sleepiness
Belief Embarrassment Opinion Stupor

Cognition Exaltation Patience Subordination
Consciousness Exhaustion Peacefulness Thought

Craziness Fatigue Pensiveness Trance
Curiosity Friendliness Pity Transcendence
Decision Imagination Planning Uneasiness
Desire Insanity Playfulness Weariness
Disarray Inspiration Reason Worry
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Table S2. Regions representing PCA-derived dimensions (cluster-corrected, P < 0.05)

Dimension/anatomical label x y z Max T Volume

Rationality
Anterior temporal lobe −40 21 −40 4.83 123
Anterior temporal lobe/orbitofrontal cortex 46 13 −36 5.23 584
Ventrolateral prefrontal cortex 48 21 22 4.82 250
Dorsomedial prefrontal cortex/dorsolateral prefrontal cortex 32 33 48 5.13 1,449

Social Impact
Anterior temporal lobe/insula −38 −3 −12 6.08 890
Posterior cingulate/dorsolateral prefrontal cortex/dorsomedial prefrontal cortex −8 −57 20 8.29 14,306
Anterior temporal lobe 40 41 22 5.88 1,106
Insula 48 3 10 8.52 433
Temporoparietal junction −40 −69 22 6.62 2,038
Posterior superior temporal sulcus −54 −37 0 4.28 78
Temporoparietal junction 46 −63 26 6.40 939
Dorsolateral prefrontal cortex 30 11 60 5.73 955

Human mind
Parahippocampal gyrus 18 −41 −14 5.29 108

Valence
Ventrolateral prefrontal cortex −52 17 10 3.98 99
Temporoparietal junction −48 −47 28 4.66 646
Dorsolateral prefrontal cortex −34 23 38 5.01 591
Precentral gyrus −32 −7 60 4.58 387

Coordinates refer to the Montreal Neurological Institute stereotaxic space.
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Table S3. Regions containing patterns consistent with existing psychological theories (cluster-corrected, P < 0.05)

Dimensions/anatomical label x y z Max T Volume

Agency & experience
Anterior temporal lobe −42 19 −40 6.17 462
Anterior temporal lobe/dorsomedial prefrontal cortex/dorsolateral prefrontal cortex 46 13 −36 5.81 5,826
Superior temporal sulcus −54 −19 −18 4.98 340
Lateral orbitofrontal cortex −34 37 −10 5.21 281
Ventromedial prefrontal cortex −6 41 −6 5.03 303
Temporoparietal junction/posterior superior temporal sulcus 58 −47 20 4.74 662

Valence & arousal
Anterior temporal lobe −56 1 −30 5.33 531
Middle temporal gyrus −58 −45 −10 5.37 608
Hippocampus −34 −13 −12 4.42 78
Thalamus 12 −23 −4 5.29 120
Cuneus −4 −89 0 5.49 282
Medial parietal lobe −10 −55 20 6.5 2,746
Dorsolateral/dorsomedial prefrontal cortex 8 21 34 6.82 7,608
Temporoparietal junction −46 −51 26 7.02 2,311
Ventrolateral prefrontal cortex −56 17 10 4.18 113
Temporoparietal junction 52 −69 30 6.01 960
Midcingulate gyrus 6 −1 38 4.41 137

Emotion & reason
Anterior temporal lobe −42 19 −38 5.51 170
Anterior temporal lobe/orbitofrontal cortex 16 35 −8 5.95 951
Ventromedial prefrontal cortex −8 41 −4 4.18 310
Lateral prefrontal cortex 48 21 22 4.03 77
Dorsomedial prefrontal cortex 0 51 30 4.9 3,011

Mind & body
Anterior insula −40 13 −22 4.25 78
Medial prefrontal/anterior cingulate cortex 0 35 12 4.95 916
Ventrolateral prefrontal cortex −46 33 4 4.38 106
Temporoparietal junction −42 −61 8 4.48 336
Medial parietal lobe 4 −53 20 6.23 1,753
Dorsolateral prefrontal cortex 38 33 10 4.2 185
Temporoparietal junction 46 −67 32 5.68 316
Dorsolateral prefrontal cortex 22 15 52 4.39 194

Shared & unique
Parahippocampal gyrus −16 −39 −2 4.56 86
Posterior cingulate cortex 12 −49 6 5.63 260

Social & nonsocial
Precuneus −4 −65 26 4.92 186

Warmth & competence
Anterior temporal lobe 42 19 −42 5.61 101
Anterior temporal lobe/ventrolateral prefrontal cortex −50 19 12 4.3 374
Superior temporal gyrus 46 21 −12 4.05 94
Middle temporal gyrus −48 −41 −4 4.31 135
Temporoparietal junction −46 −57 20 6.02 371
Dorsomedial prefrontal cortex/dorsolateral prefrontal cortex 18 37 46 6.6 2,638

Coordinates refer to the Montreal Neurological Institute stereotaxic space.
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